FIBROLYTIC ACTIVITY OF PODAXIS PISTILLARIS FUNGUS IN SUBMERGED CULTURE
DOI:
https://doi.org/10.18633/biotecnia.v21i1.874Palabras clave:
cellulases, xylanases, laccases, thermostable enzyme, enzymatic activityResumen
Podaxis pistillaris is a fungus commonly found in most desert areas worldwide. The oval shaped peridium, the rigid woody stipe, plus a 10-15 μm spore size stand out among its morphological features. Even though this fungus is used for human consumption and for several traditional remedies, a lack of knowledge regarding its fibrolytic enzymatic system still prevails. This fungus was collected from the central region of the Sonoran desert (29° 07.23´ 97” LN and 110° 53.58´ 02” LW, 238 masl). In order to study its enzymatic system on common fibers, P. pistillaris was grown in a specific submerged culture in order to determine total cellulases, xylanases and laccases. The maximum cellulolytic (501.7 U·mg-1), as well as xylanolytic (157.8 U·mg-1) activities, were detected after 18 cultivation days, whereas the highest laccase specific activity (179.6 U·mg-1) was registered after 15 days at 40° C. The thermostability of total cellulases, xylanases and laccases was found within temperatures ranging from 40 to 60° C. The present study represents the first report of P. pistillaris fibrolytic activity in submerged culture.
Descargas
Citas
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. y Lipman, D.J. 1990.
Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.
Atreya, M.E., Strobel, K.L. y Clark, D.S. 2016. Alleviating product inhibition in cellulase enzyme cel7A. Biotechnology and Bioengineering. 113: 330-338.
Blumer-Schuette, S.E., Kataeva, I., Westpheling, J., Adams W.W. y Kelly, R.M. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Current Opinion in Biotechnology. 19: 210-217.
Bradford, M.M. 1976. A rapid and sensitive method for the quanititation of microgram quiantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-254.
Chander, E., Gupta, R. y Singh, A. 2011. Microbial cellulases and their industrial applications. Enzyme Research. 2011: 1-10.
Dashtban, M., Schraft, H., Syed, T.A. y Qin, W. 2010. Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology. 1: 36-50.
Dubois, M., Gillesk, A., Hamiltonj, K., Rebersp, A. y Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28: 350-356.
Elisashvili, V., Kachlishvili, E. y Penninckx, M. 2008. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology & Biotechnology. 35: 1531–1538.
Esqueda, M., Gutiérrez, A., Coronado, M.L., Lizárraga, M., Raymundo, T. y Valenzuela, R. 2012. Distribución de algunos hongos gasteroides (Agaricomycetes) en la planicie central del Desierto Sonorense. Revista Mexicana de Micología 36:1-8.
Feleke, H.T. y Doshi, A. 2017. Antimicrobial activity and bioctive compounds of indian wild mushrooms. Indian Journal of Natural Products and Resources. 8: 254-262.
García-Oduardo, N., Bermúdez-Savón, R.C., Tellez-Suarez, I., Chávez-Toledano, M. y Perraud-Gaime, I. 2017. Enzimas lacasa en inóculos de Pleurous spp. Tecnología Química. 37:1-6.
Green, M.R. y Sambrook, J. 2012. Molecular Cloning: A Laboratory Manual, 4th ed. Cold Spring Harbor, NY. 1: 32-34.
Herrera, T. y Ulloa, M. 1998. El reino de los hongos. Micología básica y aplicada. 2a Ed. Universidad Nacional Autónoma de México-Fondo de Cultura Económica, México, D.F. 552 pp.
Ho, H.L. y Iylia, Z. 2015. Optimised production of xylanase by Aspergillus brasiliensis under submerged fermentation (SmF) and its purification using a two-step column chromatography. Journal of Advances in Biology & Biotechnology. 4: 1-22.
Hollmann, F., Gumulya, Y., Tolle, Ch., Liese, A. y Thum, O. 2008. Evaluaation of the laccase from Myceliophthora thermophila as industrial biocatalist for polymerization reactions. Macromolecules. 41: 8520-8524.
Inalbon, M.C., Mocchiutti, P., Zanuttini, M.A., Balatti, P., Rajchenberge, M. y Saparrat, C.N. 2015. Applying ligninolytic fungi on Eucalyptus grandis wood for pulping pretreatment or fractionation. Procedia Materials Science. 8: 1099 –1107.
Johnson, J. y Vilgalys, R. 1999. Phylogenetic relationships within Lepiota sensu lato inferred from nuclear and mitochondrial rDNA sequences. Mycologia. 91: 443-458.
Kanwar, S.S. y Devi, S. 2012. Thermostable xylanases from microbial origin: Recent insights and biotechnological potential. The International Journal of Biotechnology. 1:1-20.
Li, X., She, Y., Sun, B., Song, H., Zhu, Y., Lv, Y. y Song, H. 2010. Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp. Biochemical Engineering Journal. 52: 71-78.
Manole, A., Herea, D., Chiriac, H. y Melnig, V. 2008. Laccase activity determination. Scientific Annals of Alexandru Ioan Cuza din Iaşi University, Tom IV, Biomaterials in Biophysics Medical Physics and Ecology. 1: 17–24.
Márquez, A.T., Mendoza, G.D., González, S.S., Buntinx, S.E. y Loera, O. 2007. Actividad fibrolítica de enzimas producidas por Trametes ssp. EUM1, Pleurotus ostreatus IE8 y Aspergillus niger AD96.4 en fermentación sólida. Interciencia. 32: 780-785.
Mate, D.M. y Alcalde, M. 2017. Laccase: a multi-purpose biocatalist at the Forefront of biotechnology. Microbial Biotechnology. 10: 1457-1467.
Mazumder, S., Bose, S., Bandopadhyay, A., Alam, S. y Mukherjee, M. 2008. Study of laccase production by Pleurotus ostreatus in a 5 l bioreactor and application of the enzyme to determine the antioxidant concentration of human plasma. Letters in Applied Microbiology. 47: 355-360.
Mtibaà, R., de Eugenio, L., Ghariani, B., Louati, I., Belbahri, L., Nasri, M. y Mechichi, T. 2017. A halotolerant laccase from Chaetomium strain isolated from desert soil and its ability for dye decolourization. Biotech. 7:329
Murad, H.A. y Azzaz, H.H. 2010. Cellulase and dairy animal feeding. Biotechnology 9: 238-256.
Płaza, G.A., Upchurch, R., Brigmon, R. L., Whitman, W. B. y Ulfig, K. 2004. Rapid DNA extraction for screening soil filamentous fungi using PCR amplification. Polish Journal of Environmental Studies. 13: 315-318.
Vásquez-Dávila, M.A. 2017. Current and potential use of the desert fungus Podaxis pistillaris (L.) Fr. (Agaricaceae). Journal of Bacteriology &Mycology: Open Access 5(3): 00137.
DOI:10.15406/jbmoa.2017.05.00137.
Villalobos, S., Mengual, M. y Henao-Mejía, L.G. 2017. Uso de los hongos, Podaxis pistillaris, Inonotus rickii y Phellorinia herculeana (basidiomycetes), por la etnia Wayuu en la alta guajira colombiana. Revista Etnobiología. 15: 64-73.
Zambare, V., Zambare, A., Muthukumarappan, K. y Christopher, L.P. 2011. Biochemical characterization of thermophilic lignocellulose degrading enzymes and their potential for biomass bioprocessing. International Journal of Energy and Environment. 2: 99-112.
Zhu, Y., Zhang, H., Cao, M., Wei, Z., Huang, F. y Gao, P. 2011. Production of a thermostable metal-tolerant laccase from Trametes versicolor and its application in dye decolorization. Biotechnology and Bioprocess Engineering. 16: 1027-1035.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)