Efecto del estrés por nitrógeno y salinidad en el contenido de b-caroteno de la microalga Dunaliella tertiolecta//Effect of nitrogen and salinity stress on the β-carotene content of the microalgae Dunaliella tertiolecta
DOI:
https://doi.org/10.18633/biotecnia.v22i2.1241Keywords:
Dunaliella tertiolecta, ?-caroteno, limitación de nitrógeno, salinidadAbstract
Las microalgas del género Dunaliella son cultivadas con la finalidad de obtener compuestos antioxidantes, principalmente carotenoides. En este estudio se analizó el crecimiento, biomasa y contenido de β-caroteno de Dunaliella tertiolecta cultivada en condiciones de estrés por nitrógeno y salinidad. Se comparó el efecto de la salinidad a 35, 45 y 55 UPS, cada una en combinación con los medios F, F/8 y F/16; como control se usó el medio F a 35 UPS. Se utilizó un diseño factorial 3x3 a nivel de matraces de 250 mL. Se realizaron conteos celulares para determinar la fase de crecimiento estacionaria, en la cual se tomaron muestras para realizar el análisis proximal y determinar el contenido de β-caroteno. Se observó que la limitación de nitrógeno en el medio de cultivo afecta negativamente la densidad celular, sin embargo, la concentración de biomasa y materia orgánica tienden a incrementar, no siendo así en el contenido de β-caroteno. Por otro lado, el aumento en la salinidad favoreció el incremento de este pigmento. Por lo anterior, se concluyó que las condiciones más adecuadas para la obtención de β-caroteno, es el medio F a 45 UPS a partir del cual se obtuvieron rendimientos aproximados de 90 mg L-1.
ABSTRACT
The Dunaliella genus is cultivated to obtain antioxidant compounds, mainly carotenoids. In this study we analyzed growth, biomass and β-carotene content of Dunaliella tertiolecta cultivated under nitrogen and salinity stress. The salinity effects at 35, 45 and 55 UPS were compared, each one in combination with the F, F/8 and F/16 media; the F medium at 35 UPS was utilized as control. The experiment was carried out by the implementation of a 3x3 factorial design, using 250 mL flasks. Cell counts were done to determine the stationary growth phase, in which samples were taken for proximal analysis and determine the β-carotene content. It was observed that nitrogen limitation in culture media causes a negative effect on the cellular density and the β-carotene content; however, biomass and organic matter augmented under these conditions. On the other hand, the increase in salinity promoted high concentrations of the pigment. Based on the above findings, it was concluded that the most suitable conditions for the β-carotene production, is F medium at 45 UPS with yields of approximately 90 mg L-1.
Downloads
References
Abalde, J., Cid, A., Fidalgo, J. P., Torres, E., Herrero, C. 1995. Microalgas: Cultivo y Aplicaciones. Ed. Universidade da Coruña, 1ra edicion. Coruña, España. 210 pp.
Abd El-Baky, H. H., El-Baz, F. K. y El-Baroty, G. S. 2007. Production of carotenoids from marine microalgae and its evaluation as safe food colorant and lowering cholesterol agents. American-Eurasian Journal of Agriculture and Environmental Science, 2:792-800.
Andersen, R. A. 2005. Algal culturing techniques. Elsevier Academic Press. USA. 578.
Chen, Y. X., Liu, X. Y., Xiao, Z., Huang, Y. F. y Liu, B. 2016. Antioxidant activities of polysaccharides obtained from Chlorella pyrenoidosa via different ethanol concentrations. International journal of biological macromolecules, 91, 505-509.
Fazeli, M. R., Hossein, T., Nasrin, S. y Hossein, J. 2006. Carotenoids accumulation by Dunaliella tertiolecta (Lake Urmia isolated) and Dunaliella salina (Ccap 19/18 & wt) under stress conditions. Journal of Biological Sciences, 14(3): 146-150.
Fimbres Olivarria, D. 2011. Evaluación del crecimiento, biomasa y producción de carotenoides de dunaliella sp. A diferentes concentraciones de nitrógeno. Tesis de Maestría, Universidad de Sonora. Octubre 2011, 57 pp.
García, N., López Elías J. A., Miranda A., Martínez Porchas M., Huerta N., García A. 2012. Effect of salinity on growth and chemical composition of the diatom Thalassiosira weissflogii at three culture phases. Latin American Journal Aquatic Research, 40(2): 435-440.
García González, M., Moreno, J., Manzano, J. C., Folrencio, F. J. y Guerrero, M. G. 2005. Production of Dunaliella salina in biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. Journal of Biotechnology, 115(1): 81-90.
Guillard, R. R. L., y Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (CLEVE) Gran. Canadian Journal of Microbiology, 8(2), 229–239.
Hellebust, J.A. y A. Iftikhar. 1984. Osmoregulation in the Extremely Euryhaline Marine Microalga Chlorella autotrophica. Plant Physiology, 74, 1010-1015.
Ismaiel, M. M. S., El-Ayouty, Y. M. y Piercey-Normore, M. 2016. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis. Brazilian journal of microbiology, 47(2): 298-304.
Kim, G., Mujtaba, G., y Lee, K. 2016. Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae, 31(3), 257-266.
Lamers, P. P., van de Laak, C. C., Kaasenbrood, P. S., Lorier, J., Janssen, M., De Vos, R. C. y Wijffels, R. H. 2010. Carotenoid and fatty acid metabolism in light‐stressed Dunaliella salina. Biotechnology and bioengineering, 106(4): 638-648.
Le Chevanton, M., Garnier, M., Lukomska, E., Schreiber, N., Cadoret, J. P., Saint-Jean, B. y Bougaran, G. 2016. Effects of nitrogen limitation on Dunaliella sp.–Alteromonas sp. interactions: from mutualistic to competitive relationships. Frontiers in Marine Science, 3, 123.
López Elías, J. A., Fimbres Olivarria, D., Medina Juárez, L. A., Miranda Baeza, A., Martínez Córdova, L. R. y Molina Quijada, D. M. A. 2013. Produccion de biomasa y carotenoides de Dunaliella tertiolecta en medios limitados en nitrogeno. Phyton, 82:23-30.
López Sánchez, A. L. 1999. Variación estacional de la producción de biomasa y de la calidad de la composición bioquímica de dos especies de microalgas cultivadas en laboratorio e invernadero. Tesis de Licenciatura. Universidad de Sonora. Departamento de Ciencias Químico Biológicas. Hermosillo, Sonora, México.
Moffitt, C. M. y Cajas Cano, L. 2014. Blue growth: the 2014 FAO state of world fisheries and aquaculture. Fisheries, 39(11):552-553.
Nimse, S. B. y Pal, D. 2015. Free radicals, natural antioxidants, and their reaction mechanisms. Rsc Advances, 5(35), 27986-28006.
Peleg, M., Corradini, M. G., y Normand, M. D. 2007. The logistic (Verhulst) model for sigmoid microbial growth curves revisited. Food Research International, 40(7), 808-818.
Rao, R.A., Sarada, R., Baskaran V. y Ravishankar, G. A. 2006. Antioxidant activity of Botryococcus braunii extract elucidated in vitro models. Journal of Agricultural and Food Chemistry, 54(13):4593-4599.
Reed, R. H., J.C. Collins y G. Russell. 1980. The Effects of Salinity upon Cellular Volume of the Marine Red Alga Porphyra purpurea (Roth) C.Ag. Journal of Experimental Botany, 31(6):1521-1537.
Rema, P. y Gouveia, L. 2005. Effect of various sources of carotenoids on survival and growth of goldfish (Carassius auratus) larvae and juveniles. Journal of Animal and Veterinary Advances, 4(7):654-658.
Salguero, A., de la Morena, B., Vigara, J., Vega, J. M., Vilchez, C. y León, R. 2003. Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomolecular Engineering, 20(4-6), 249-253.
Serpa Ibáñez, R. F. y Calderón Rodríguez, A. 2005. Efecto del estrés por salinidad en cuatro cepas de Dunaliella salina Teodoresco En el Peru. Ecologia Aplicada, 4(1-2):127-133.
Shin, H., Hong, S. J., Kim, H., Yoo, C., Lee, H., Choi, H. K. y Cho, B. K. 2015. Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis. Bioresource technology, 194, 57-66.
Singh, S., Kate, B. N. y Banerjee, U. C. 2005. Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Reviews in Biotechnology, 25(3):73-95.
Singh, P., Baranwal, M. y Reddy, S. M. 2016. Antioxidant and cytotoxic activity of carotenes produced by Dunaliella salina under stress. Pharmaceutical biology, 54(10), 2269-2275.
Sui, Y., Muys, M., Van de Waal, D. B., D’Adamo, S., Vermeir, P., Fernandes, T. V. y Vlaeminck, S. E. 2019. Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity. Bioresource Technology, 287: 121398.
Wongsnansilp, T., Yokthongwattana, K., Roytrakul, S. y Juntawong, N. 2019. β-carotene production of UV-C induced Dunaliella salina under salt stress. Journal Pure Applied Microbiology, 13(1), 193-200.
Yaşar, D. y Şevket, G. 2006. α-tocopherol and fatty acids of Spirulina platensis biomass in glass panel bioreactor. Pakistan Journal of Biological Sciences, 9(15):2901-2904.
Yeesang, C. y Cheirsilp, B. 2011. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource technology, 102(3), 3034-3040.
Yeh, K. L. y Chang, J. S. 2012. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource technology, 105, 120-127.
Zar, J. H. 1999. Bioestadistical analysis. Prentice-Hall. Englewood Cliffs, New Jersey.
Zhu, C., Zhai, X., Jia, J., Wang, J., Han, D., Li, Y. y Chi, Z. 2018. Seawater desalination concentrate for cultivation of Dunaliella salina with floating photobioreactor to produce β-carotene. Algal research, 35, 319-324.
Downloads
Published
How to Cite
Issue
Section
License
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.