Mycoparasitic antagonism of a Trichoderma harzianum strain isolated from banana plants in Oaxaca, Mexico
DOI:
https://doi.org/10.18633/biotecnia.v23i1.1310Keywords:
Biological control, Panama disease, phytopathogen, plant healthAbstract
Bananas are important crops in developing countries with tropical climate. In Mexico, the banana production has increased, and it must be guaranteed. The Panama disease, caused by the fungus Fusarium oxysporum f.sp. cubense threatens the current banana production, for what is necessary to implement methods to protect this crop. Fungi from genus Trichoderma are natural residents of the rhizosphere. This genus comprises mycoparasite species used to control diseases caused by phytopathogenic fungi, and also benefit plant development. In this report, we present data of the identification and characterization of the novel strain Trichoderma harzianum M110 that displays antagonism and biocontrol potential in laboratory conditions. Exploration of the rhizosphere and the endophytic microbial communities might help to identify microbes adapted to banana plants that can be incorporated in organic biological control formulations that ensure production of Fusarium-free plants and healthy fruits with export quality.
Downloads
References
Almeida, K.A., Armesto, C., Monteiro, F.P., de Souza, J.T. 2018. Diversity of Trichoderma species isolated from dead branches and sapwood of Theobroma cacao trees. Tropical Plant Pathology. 43: 90-94.
Askew, D.J., Laing, M.D. 1994. The in vitro screening of 118 Trichoderma isolates for antagonism to Rhizoctonia solani and an evaluation of different environmental sites of Trichoderma as sources of aggressive strains. Plant and Soil. 159: 277-281.
Ávila-Díaz, I., Garibay-Orijel, R. Magaña-Lemus, R.E, Oyama, K. 2013. Molecular evidence reveals fungi associated within the epiphytic orchid Laelia speciosa (HBL) Schltr. Botanical Sciences. 91: 523-529.
Bailey, B.A., Bae, H., Strem, M.D., Crozier, J., Thomas, S.E., Samuels, G.J., Vinyard, B.T., Holmes, K. A. 2008. Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biological Control. 46: 24-35.
Castillo, A., Puig, C., Cumagun, C. 2019. Non-synergistic effect of Trichoderma harzianum and Glomus spp. in reducing infection of Fusarium wilt in banana. Pathogens. 8: 43.
Chaverri, P., Branco-Rocha, F., Jaklitsch, W., Gazis, R., Degenkolb, T., Samuels, G.J. 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia. 107: 558-590.
Contreras-Cornejo, H.A., Macías-Rodríguez, L. Cortés-Penagos, C. , López-Bucio, J. 2009. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiology. 149: 1579-1592.
Contreras-Cornejo, H.A., Macías-Rodríguez, J., del-Val, E., Larsen, J. 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology. 92: fiw036.
FAO. 2017. Banana/Market Review 2015-2016. Food Agricultura Organization of the United Nations. http://www.fao.org/3/a-i7410e.pdf.
FAO. 2018. Banana Market Review 2018. Preliminary Results for 2018. 2018. http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Bananas/Documents/Banana_Market_Review_Prelim_Results_2018.pdf.
Fourie, G., Steenkamp, E.T., Ploetz, R.C., Gordon, T.R., Viljoen, A. 2011. Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infection, Genetics and Evolution. 11: 533-542.
Gamms, W., Bissett, J. 2002. Morphology and identification of Trichoderma. En: Trichoderma and Gliocladium volumen I. Basic biology, taxonomy and genetics. C.P. Kubicek y G.E. Harman (ed.), pp. 3-31. Taylor & Francis, Bristol.
Garcia-Bastidas, F, Quintero-Vargas, C., Ayala-Vasquez, M., Seidl, M. Schermer, T., Santos-Paiva, M. Noguera, A.M., Aguilera- Gálvez, C., Wittenberg, A., Hofstede, R., Sørensen A. 2020. First report of Fusarium Wilt Tropical Race 4 in Cavendish bananas caused by Fusarium odoratissimum in Colombia. Plant Disease. 104: 994.
Gobierno de México. 2020. https://www.gob.mx/senasica/prensa/inicia-mexico-exportacion-de-platano-a-china-232458.
Guzmán-Guzmán, P., Porras-Troncoso, M.D., Olmedo-Monfil, V., Herrera-Estrella, A. 2018. Trichoderma species: versatile plant symbionts. Phytopathology. 109: 6-16.
Harman, G.E., Howell, C.R., Viterbo, A., Chet, I., Lorito, M. 2004. Trichoderma species - Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology. 2: 43-56.
Jiang, Y., Wang, J.L., Chen, J., Mao, L.J., Feng, X.X., Zhang, C.L., Lin., F.C. 2016. Trichoderma biodiversity of agricultural fields in east China reveals a gradient distribution of species. PLoS ONE. 11: e0160613.
Jogaiah, S., Abdelrahman, M., Phan, L.S., Tran, Ito, S.I. 2018. Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Molecular Plant Pathology. 19: 870-882.
Keswani, C., Mishra, S., Sarma, B.K., Singh, S.P., Singh, H.B. 2014. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Applied Microbiology and Biotechnology. 98: 533-544.
Lin, Y. H., Chang, J.Y., Liu, E.T., Chao, C.P., Huang, J.W., Chang, P.F.L. 2009. Development of a molecular marker for specific detection of Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology. 123: 353-365.
Maldonado-Bonilla, L.D., Calderón-Oropeza, M.A, Villarruel- Ordaz, J.L., Sánchez-Espinosa, A.C. 2019. Identification of novel potential causal agents of Fusarium wilt of Musa sp. AAB in southern Mexico. Journal of Plant Pathology & Microbiology. 10: 479.
Martínez-Medina, A., Fernández, I., Sánchez-Guzmán, M.J., Jung, S.C., Pascual, J.A., Pozo, M.J. 2013. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Frontiers in Plant Science 4: 206.
Mukherjee, P.K., Horwitz, B.A., Herrera-Estrella, A., Schmoll, M., Kenerley, C.M. 2013. Trichoderma research in the genome era. Annual Review of Phytopathology. 51: 105-129.
Ordonez, N, Seidl, M.F., Waalwijk, C., Drenth, A., Kilian, A., Thomma, B.P.H.J., Ploetz, R.C., Kema. G.H.J 2015. Worse comes to worst: Bananas and Panama disease—when plant and pathogen clones meet. PLoS Pathogens. 11: e1005197.
Ploetz, R.C. 2015. Fusarium wilt of banana. Phytopathology. 105: 1512-1521.
Pryce, T.M., Palladino, S., Kay, I.D., Coombs, G.W. 2003. Rapid identification of fungi bysequencing the ITS1 and ITS2 regions using an automated capillary electrophoresis system. Medical Mycology. 41: 369-81.
Ramírez-Valdespino, C.A., Casas-Flores, S., Olmedo-Monfil, V. 2019. Trichoderma as a model to study effector-like molecules. Frontiers in Microbiology. 10: 1030.
Ratnasingham, S, Hebert, P.D. 2007. BOLD: The barcode of life data system (http://www.boldsystems.org ). Molecular Ecology Notes. 7: 355-364.
SIAP. 2018. Intención de Cosecha 2018. 2018. http://infosiap.siap.gob.mx/opt/agricultura/intension/Intencion_cosechaPerenne_cultivo2018.pdf
Venegas-González, J., Méndez-Inocencio, C., Martínez-Mendoza, E.K., Torres L.F., Rodríguez-Torres M.D. 2019. Producción orgánica de Beta vulgaris subespecie cicla con inoculantes microbianos. Biotecnia. 21: 121-126.
Verdín, J., Sánchez-León, E., Rico-Ramírez, A.M., Martínez- Núñez, L., Fajardo-Somera, R.A., Riquelme, M. 2019. Off the wall: The rhyme and reason of Neurospora crassa hyphal morphogenesis. The Cell Surface. 5: 100020.
Woo, S.L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G., Lorito, M. 2014. Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal. 8: 71-126.
Yedidia, I., Srivastva, A.K., Kapulnik, Y., Chet, I. 2001. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and Soil. 235: 235-242.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.