Harina de Chayotextle como materia prima de galletas prebióticas libres de gluten adicionadas con fructanos de Agave angustifolia Haw

Authors

  • Wendy Magaly Arias Balderas
  • Miguel Ángel Aguilar Mendez
  • Marluci Palazzolli-da Silva
  • Carmen Silvia Favaro-Trindade
  • Fernanda María Vanin
  • Delia Quintana Zavala CICATA U. Legaria IPN

DOI:

https://doi.org/10.18633/biotecnia.v23i2.1350

Keywords:

Celiac population; Agave fructanos; prebiotic capacity; cereal substitutes; roots

Abstract

Some plants, roots or tubers have been used as possible cereal substitutes in gluten-free cookies. Chayotextle is rich in starch and other compounds that could make it a potential ingredient for products aimed at the celiac population. In this study, the effect of different mixtures of rice flour (RF) and Chayotextle flour (CF) on the final properties of cookies and the prebiotic capacity when adding agave fructans (AF) was evaluated. Flour properties (water and oil absorption, emulsifying capacity) and cookies (diameter, thickness, specific volume, color, hardness and prebiotic capacity) were determined. CF presented higher emulsifying capacity, absorption of water and oil (27.1 %, 66.22 % and 95.93 %, respectively). The cookies with CF and AF reached the highest values in physical properties (65.10-66.82 mm in diameter, 9.36-10.04 mm thickness, 1.72-2.07 mL/g specific volume and 201.82 N in hardness). CF and the CF-AF formulation showed ability promoted the growth of both strains studied: Lactobacillus acidophilus LA-3 and Bifidobacterium animalis ssp. Lactis, reaching values of up to 9.82 log10 CFU/g and 9.85 log10 CFU/g (CF) respectively, in a period of 24 h. The CF and the addition of FA improved the properties of the cookies and proved to be a possible prebiotic source.

Downloads

Download data is not yet available.

References

AOAC. 2006. Official Methods of analysis. 18th ed. Association of Official Analytical Chemists. Washington, D.C.

Ayala Monter, M. A., Hernández Sánchez, D., Pinto Ruiz, N., González Muñoz, Sergio S., Bárcena Gama, J. R., Hernández Mendo, O., & Torres Salado, N. (2018). Efecto prebiótico de dos fuentes de inulina en el crecimiento in vitro de Lactobacillus salivarius y Enterococcus faecium. Revista Mexicana de Ciencias Pecuarias, 9(2), 346-361. http://dx.doi.org/10.22319/rmcp.v9i2.4488.

Bárcenas, M. E. & Rosell, C. M. (2005). Effect of HPMC addition on the microstructure, quality and aging of wheat bread. Food Hydrocolloids, 19(6), 1037-1043. https://doi.org/10.1016/j.foodhyd.2005.01.005

Chandrasekara, A. & Kumar, T. J. (2016). Roots and Tuber Crops as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits. International Journal of food Science. 1-15. https://doi.org/10.1155/2016/3631647

Chaparro, S.P., Tavera, M.L., Martínez, J.J & Gil, J.H. (2014). Propiedades funcionales de la harina y de los aislados proteicos de la semilla de guanábana (Annona muricata). Revista U.D.C.A. Actualidad & Divulgación Científica, 17(1), 151-159. https://doi.org/10.31910/rudca.v17.n1.2014.950

China, R., Mukherjee, S., Sen, S, Bose, S., Datta, S., Koley, H., Ghosh, S., & Dhar, P. (2012). Antimicrobial activity of Sesbania grandiflora flower polyphenol extracts on some pathogenic bacteria and growth stimulatory effect on the probiotic organism Lactobacillus acidophilus. Microbiological Research, 167(8), 500-506. https://doi.org/10.1016/j.micres.2012.04.003

Cruz Villegas, R. (2017). Estudios científicos relacionados a la raíz tuberizada de chayote (Sechium edule), revisión. Boletín de ciencias agropecuarias Del ICAP, 3(5). https://doi.org/10.29057/icap.v3i5.2061

Cuevas-Juárez, E., Ávila-Fernández, A., & López-Munguía, A. (2017). Identification of enzymatic activities involved in agave fructan consumption by Bifidobacterium longum subsp. infantis ATCC 15697. Journal of functional foods, 35, 267-278. https://doi.org/10.1016/j.jff.2017.05.048

Da Silva, T. F. & Conti-Silva, A. C. (2018). Potentiality of glutenfree chocolate cookies with added inulin/oligofructose: Chemical, physical and sensory characterization. LWTfood Science and Technology, 90, 172-179. https://doi.org/10.1016/j.lwt.2017.12.031

De Paulo Farias, D., Fernandes de Araujo, F., Neri-Numa, I.A & Pastore, G.M. (2019). Prebiotics: Trends in food, health and technological applications. Trends in food Science & Technology, 93, 23-35. https://doi.org/10.1016/j.tifs.2019.09.004

Drabińska, N., Zieliński, H. & Krupa-Kozak, U. (2016). Technological benefits of inulin-type fructans application in gluten-free products. Trends in Food Science & Technology, 56, 149-157. https://doi.org/10.1016/j.tifs.2016.08.015

Elmi Sharlina, M.S., Yaacob, W.A., Lazim, A.M., Fazry, S., Lim, S. J., Abdullah, S., Noordin, A., Kumaran, M. (2017). Physicochemical properties of starch from Discorea pyrifolia tubers. Food Chemistry, 220, 225-232. https://doi.org/10.1016/j.foodchem.2016.09.196

Fuentes-Berrio, L., Acevedo-Correa, D. & Gelvez-Ordoñez, V.M. (2015). Alimentos funcionales: Impacto y retos para el desarrollo y bienestar de la sociedad colombiana. Biotecnología en el sector agropecuario y agroindustrial, 13(2), 140-149. http://dx.doi.org/10.18684/BSAA(13)140-149.

Garcia, Y., Boucourt, R., Albelo, N. & Nunez, O. (2007). Fermentación de inulina por bacterias acido-lácticas con características prebióticas. Revista Cubana de Ciencia Agrícola, 41(3), 263-266. https://www.redalyc.org/artículo.oa?id=193017693011

Giuberti, G., Marti, A., Fortunati, P & Gallo, A. (2017). Gluten free rice cookies with resistant starch ingredients from modified waxy rice starches: Nutritional aspects and textural characteristics. Journal of Cereal Science, 76, 157-164. https://doi.org/10.1016/j.jcs.2017.06.008

González Victoriano, L., Hernández Uribe, J., & Güemes Vera, N. (2017). Chayotextle (Sechium edule), posible ingrediente en la elaboración de los productos libres de gluten. Boletín De Ciencias Agropecuarias Del ICAP, 3(5). https://doi.org/10.29057/icap.v3i5.2065.

Hamdani, A.M., Wani, I.A & Bhat, N.A. (2020). Gluten free cookies from rice-chickpea composite flour using exudate gums from acacia, apricot and karaya. Food Bioscience, 35. https://doi.org/10.1016/j.fbio.2020.100541

Hu, W. X., Chen, J., Xu, F., Chen, L., & ZhaoJ-W. (2020a). Study of crystalline, gelatinization and rheological properties of Japonica rice flour as affected by starch fine structure. International Journal of Biological Macromolecules, 148, 1232-1241. https://doi.org/10.1016/j.ijbiomac.2019.11.020

Hu, W. X., Chen, J., Zhao, J. W., Chen, L. & Wang, Y. H. (2020b). Effect of the addition of modified starch on gelatinization and gelation properties of rice flour. International Journal of Biological Macromolecules. 153, 26-35. https://doi.org/10.1016/j.ijbiomac.2019.11.020

Jan, R., Saxena, D.C. & Singh, S. (2016). Physicochemical, textural, sensory and antioxidant characteristics of gluten free cookies made from raw and germinated Chenopodium (Chenopodium album) flour. LWT- Food Science and Technology, 71, 281-287. https://doi.org/10.1016/j.lwt.2016.04.001

Jiménez-Hernández, J., Salazar-Montoya, J.A. & Ramos-Ramírez, E.G. (2007). Physical, chemical and microscopic characterization of a new starch from chayote (Sechium edule) tuber and its comparison with potato and maize starches. Carbohydrate polymers, 68, 679-686. https://doi.org/10.1016/j.carbpol.2006.07.035

Kaur, P., Sharma, P., Kumar, V., Panghal, A., Kaur, J., & Gat, Y. (2017). Effect of addition of flaxseed flour on phytochemical, physicochemical, nutritional, and textural properties of cookies. Journal of the Saudi Society of Agricultural Sciences, 30, 1-6. https://doi.org/10.1016/j.jssas.2017.12.004

Koenen, M. E., Cruz Rubio, J. M., Mueller, M., & Venema, K. (2016). The effect of agave fructan products on the activity and composition of the microbiota determined in a dynamic in vitro model of the human proximal large intestine. Journal of Functional Foods, 201-210. https://doi.org/10.1016/j.jff.2016.01.018

Leidi, E.O., Altamirano A. M., Mercado, G., Rodríguez, J. P., Ramos, A., Alandia, G., Sorensen, M., & Jacobsen, S.-E. (2018). Andean roots and tubers crops as sources of functional foods. Journal of Functional Foods, 51, 86-93. https://doi.org/10.1016/j.jff.2018.10.007

Luo, D., Li, Y., Xu, B., et al. (2017). Effects of inulin with different degree of polymerization on gelatinization and retrogradation of wheat starch. Food Chemistry, 229, 35-43. https://doi.org/10.1016/j.foodchem.2017.02.058

Mancebo, C.M., Rodriguez, P. & Gomez, M. (2016). Assessing rice flour-starch-protein mixtures to produce gluten free sugar-snap cookies. LWT- food Science and Technology, 67, 127-132. http://dx.doi.org/10.1016/j.lwt.2015.11.045.

Mancilla-Margalli, N. A. & Lopez, M. G. (2006). Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. Journal of Agricultural and Food Chemistry, 54, 7832-7839. https://doi.org/10.1021/jf060354v

Moro, T. M. A., Celegatti, C. M., Pereira, A. P. A., Lopes, A. S., Barbin, D. F., Pastore, G. M. & Cleici, M. T. P. S. (2018). Use of burdock root flour as a prebiotic ingredient in cookies. LWT- Food and Science Technology, 90, 540-546. https://doi.org/10.1016/j.lwt.2017.12.059

NMX-F-006-1983. Alimentos. galletas. Food. cookie. Normas mexicanas. Dirección General de Normas.

Pérez Flores, J. G., Jaimez Ordaz, J., & Contreras Lopez, E. (2017). ¿Que es un alimento funcional? Pädi Boletín Científico De Ciencias Básicas E Ingenierías Del ICBI, 4(8). https://doi.org/10.29057/icbi.v5i8.2047

Ritsema, T. & Smeekens, S. (2003). Fructans: beneficial for plants and humans. Current Opinion in Plant Biology, 6, 223-230. https://doi.org/10.1016/S1369-5266(03)00034-7

Romano, N., Sciammaro, L., Mobili, P., Puppo, M. C., & Gómez-Zavaglia, A. (2019). Flour from mature Prosopis nigra pods as suitable substrate for the synthesis of prebiotic fructo-oligosaccharides and stabilization of dehydrated Lactobacillus delbrueckii subsp. bulgaricus. Food Research International, 121, 561-567. https://doi.org/10.1016/j.foodres.2018.12.016

Rubel, I. A., Pérez, E. E., Genovese, D. B., & Manrique, G. D. (2014). In vitro prebiotic activity of inulin-rich carbohydrates extracted from Jerusalem artichoke (Helianthus tuberosus L.) tubers at different storage times by Lactobacillus paracasei. Food Research International, 62, 59-65. https://doi.org/10.1016/j.foodres.2014.02.024

Santiago-García, P. A., Mellado-Mojica, E., León-Martínez, F. M. & López, M.G. (2017). Evaluation of Agave angustifolia fructans as fat replacer in the cookies manufacture. LWTFood Science and Technology, 77, 100-109. https://doi.org/10.1016/j.lwt.2016.11.028

Sarmiento Rubiano, L. A. (2006). Alimentos funcionales, una nueva alternativa de alimentación. Orinoquia, 10 (1), 16-23. Consulted December 21, 2020. ISSN: 0121-3709. Disponible en: https://www.redalyc.org/articulo.oa?id=896/89610103

Shiga, T.M., Peroni-Okita, F. H. G., Carpita, N.C., Lajolo, F. M., & Cordenunsi, B. R. (2015). Polysaccharide composition of raw and cooked Chayote (Sechium edule Sw.) fruits and tuberous roots. Carbohydrate polymers, 130, 155-165. https://doi.org/10.1016/j.carbpol.2015.04.055

Smewing, J. (2016). AACCI approved methods technical committee report on the collaborative study for a new AACCI method (10-16.01): Volumetric and dimensional profile determination of baked products using laser topographyvolscan profile. Cereal Foods World, 61(1), 18-23. https://doi.org/10.1094 / CFW-61-1-0018

Van der Meulen, R., Makras, L., Verbrugghe, K., Adriany, T., & De Vuyst, L. (2006). In vitro kinetic analysis of oligofructose consumption by Bacteroides and Bifidobacterium spp. Indicates different degradation mechanisms. Applied and Environmental Microbiology, 72(2), 1006-1012. https://doi.org/10.1128/AEM.72.2.1006-1012.2006

Vieira, A.D.S., Bedani, R., Albuquerque, M.A.C., Biscola, V., & Saad, S.M.I. (2017). The impact of fruit and soybean by-products and amaranth on the growth of probiotic and starter microorganisms. Food Research International, 97, 356-363. https://doi.org/10.1016/j.foodres.2017.04.026

Downloads

Published

2021-07-01

How to Cite

Arias Balderas, W. M., Aguilar Mendez, M. Ángel, Palazzolli-da Silva, M., Favaro-Trindade, C. S., Vanin, F. M., & Quintana Zavala, D. (2021). Harina de Chayotextle como materia prima de galletas prebióticas libres de gluten adicionadas con fructanos de Agave angustifolia Haw. Biotecnia, 23(2), 30–38. https://doi.org/10.18633/biotecnia.v23i2.1350

Issue

Section

Research Articles

Metrics