Growth and production of laccase enzymes of Pleurotus ostreatus during the degradation process of bisphenol a

Authors

DOI:

https://doi.org/10.18633/biotecnia.v23i2.1357

Keywords:

Biodegradation, Bisphenol A, Pleurotus ostreatus, Laccases, kinetic parameters

Abstract

Bisphenol A [4'4'-dihydroxy-2,2 diphenylpropane] (BPA) is an organic compound used in a wide range of household products. BPA is considered as a powerful endocrine disruptor that puts human health at risk. In this investigation, evaluated the growth of Pleurotus ostreatus in presence of 50 and 75 mg/L of BPA in submerged fermentation, evaluating the; specific growth rate (µ), maximum biomass (Xmax), glucose consumption, percentage (%) and biodegradation constant (k) of BPA, enzymatic activity of laccase (U/L), and some of its enzymatic kinetic parameters. The highest values regarding the kinetic parameters of growth and laccase production were obtained in the medium with 75 mg/L of BPA. P. ostreatus showed neutral-basic pH values in the media added with BPA. Glucose consumption was 100% in all media. During the first 100 h of growth, this fungus degraded more than 50% of both concentrations. This research is the first in Mexico that demonstrates the degradative efficiency of P. ostreatus BE01 by degrading a concentration of BPA that has not been previously reported and is higher than those reported in various environmental matrices.

Downloads

Download data is not yet available.

Author Biographies

Georgina, Laboratory of Experimental Biology, Autonomous University of Tlaxcala, Autonomous University of Tlaxcala

The M.Sc. Georgina, is a Master in Environmental Sciences from the Autonomous University of Tlaxcala. She has specialized in the degradation of complex compounds by white rot fungi and the production of ligninolytic enzymes.

José Luis, Laboratory of Experimental Biology, Autonomous University of Tlaxcala, Autonomous University of Tlaxcala

M.Sc. José Luis, has specialized in biodegradation of plasticizers using filamentous fungi, he is currently studying a PhD in Biotechnology at the Autonomous Metropolitan University.

Libertad, Genetics and Environment Research Center, Autonomous University of Tlaxcala

Dr. Libertad is a researcher at the Center for Research in Genetics and Environment, she has specialized in bioindicators of toxicity of xenobiotic compounds present in contaminated soils and waters.

Diana, Research Center in Applied Biotechnology, National Polytechnic Institute

Dr. Diana Verónica, a researcher at the Center for Research in Applied Biotechnology, has specialized in environmental biotechnology, specifically in bioremediation of soils and waters contaminated by polycyclic aromatic hydrocarbons using a consortium of filamentous fungi.

Jorge, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Department of Marine Resources

The PhD. Rubio, is a Doctor of Science from the CINVESTAV of Yucatan, he has specialized in ecotoxicity of xenobiotic compounds. He has published more than 10 original research papers. Currently directing master's degree and doctorate at the Universidad del Mar.

Miriam, Laboratory of Experimental Biology, Autonomous University of Tlaxcala, Autonomous University of Tlaxcala

I have a degree in Pharmaceutical Sciences from UDLAP, M.Sc. from the Autonomous University of Tlaxcala and PhD. in Experimental Biology from the Autonomous Metropolitan University. I have published 11 research papers, supervised more than 8 bachelor's thesis, 5 master's, and I am currently directing 2 doctoral theses. My area of research is the bioremedation of sites contaminated by xenobiotics.

References

Adoamnei, E., Mendiola, J., Vela-Soria, F., Fernández, M.F., Olea, N., Jørgensen, N., Swan, S.H. y Torres-Cantero, A.M. 2018. Urinary bisphenol A concentrations are associated with reproductive parameters in young men. Environmental Research. 161: 122-128.

Ahuactzin-Pérez, M., Tlecuitl-Beristain, S., García-Dávila, J., González-Pérez, M., Gutiérrez-Ruíz, M.C. y Sánchez, C. 2016. Degradation of di (2-ethyl hexyl) phthalate by Fusarium culmorum: Kinetics, enzymatic activities and biodegradation pathway based on quantum chemical modeling pathway based on quantum chemical modeling. Science of the Total Environment. 566-567: 1186-1193.

Ahuactzin-Pérez, M., Tlecuitl-Beristain, S., García-Dávila, J., Santacruz-Juárez, E., González-Pérez, M., Gutiérrez-Ruíz, M.C. y Sánchez, C. 2018a. Mineralization of high concentrations of the endocrine disruptor dibutyl phthalate by Fusarium culmorum. 3 Biotech. 8: 42.

Ahuactzin-Pérez, M., Tlécuitl-Beristain, S., García-Dávila, J., Santacruz-Juárez, E., González-Pérez, M., Gutiérrez-Ruíz, M.C. y Sánchez, C. 2018c. Kinetics and pathway of biodegradation of dibutyl phthalate by Pleurotus ostreatus. Fungal Biology. 122: 991-997.

Ahuactzin-Pérez, M., Torres, J.L., Rodríguez-Pastrana, B.R., Soriano-Santos, J., Díaz-Godínez, G., Díaz, R., Tlecuitl-Beristain, S. y Sánchez, C. 2014. Fungal biodegradation of dibutyl phthalate and toxicity of its breakdown products on the basis of fungal and bacterial growth. World Journal of Microbiology and Biotechnology. 30: 2811-2819.

Baker, P., Tiroumalechetty, A. y Mohan, R. 2019. Fungal enzymes for bioremediation of xenobiotic compounds, in: Yadav, A.N., Singh, S., Mishra, S. y Gupta, A. (Eds.), Recent advancement in white biotechnology through fungi. pp 463-490. Springer, Cham.

Baralić, K., Djordjevic, A.B., Živančević, K., Antonijević, E., Andelkovic, M., Jovarac, D., Curcic, M., Bulat, Z., Antonijević, B. y Dukic-Cosic, D. 2020. Toxic effects of the mixture of phthalates and bisphenol A-subacute oral toxicity study in wistar rats. International Journal of Environmental Research Public Health. 17: 746.

Cajthaml, T. 2014. Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: Mechanisms involved in the degradation. Environmental Microbiology. 17: 4822-4834.

Cajthaml, T., Kresinová, Z., Svobodová, K. y Möder, M. 2009. Biodegradation of endocrine-disrupting compounds and suppression of estrogenic activity by ligninolytic fungi. Chemosphere. 75: 745-750.

Córdoba-Sosa, G., Torres, J.L., Ahuactzin-Pérez, M., Godínez, G., Díaz, R. y Sánchez, C. 2014. Growth of Pleurotus ostreatus ATCC 3526 in different concentrations of di (2-ethylhexyl) phthalate in submerged fermentation. Journal Chemical, Biology and Physical Science. 4: 96-103.

Díaz, R., Alonso, S., Sánchez, C., Tomasini, A., Bibbins-Martínez, M. y Díaz-Godínez, G. 2011. Characterization of the growth and laccase activity of strains of Pleurotus ostreatus in submerged fermentation. BioResources. 6: 282-290.

Díaz, R., Téllez-Téllez, M., Sánchez, C., Bibbins-Martínez, M.D., Díaz-Godínez, G. y Soriano-Santos, J. 2013. Influence of initial pH of the growing medium on the activity, production and genes expression profiles of laccase of Pleurotus ostreatus in submerged fermentations. Electronic Journal of Biotechnology. 16.

Escalona, I., Grooth, J. De, Font, J. y Nijmeijer, K. 2014. Removal of BPA by enzyme polymerization using NF membranes. Journal of Membrane Science. 468: 192-201.

Frace, J. 1988. Mathematical models in agricultura science. Weed Research. 28: 419-423.

Gassara, F., Brar, S.K., Verma, M. y Tyagi, R.D. 2013. Bisphenol A degradation in water by ligninolytic enzymes. Chemosphere. 92(10): 1356-1360.
Gorini, F., Bustaffa, E., Coi, A., Iervasi, G. y Bianchi, F. 2020. Bisphenols as environmental triggers of thyroid dysfunction: Clues and evidence. International Journal of Environmental Research Public Health. 17(8): 2654.

Hou, J., Dong, G., Ye, Y. y Chen, V. 2014. Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol-gel coated PVDF membrane. Journal of Membrane Science. 469: 19-30.

Husain, Q. y Qayyum, S. 2012. Biological and enzymatic treatment of bisphenol A and other endocrine disrupting compounds: A review. Critical Reviews in Biotechnology. 33: 260-292.

Industry-Experts. Bisphenol A - Global Market Outlook (2017-2026). [Consultado 12 Julio 2020] 2018. Disponible en: https://www.researchandmarkets.com/reports/4613546/bisphenol-a-global-market-outlook-2017-2026.

Gómez-Mercado, C.A., Mejía-Sandoval, G., Segura-Cardona, A.M., Arango-Alzate, C.M., Hernández-González, S.I., Patiño-García, D.F. y Barraza-Villarreal, A. 2018. Exposición a bisfenol a (BFA) en mujeres embarazadas y su relación con la obesidad en sus hijos: revisión sistemática. Revista Facultad Nacional de Salud Pública. 36(1): 66-74.

Kresinová, Z., Linhartová, L., Filipová, A., Ezechiáš, M., Mašín, P. y Cajthaml, T. 2018. Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor. New Biotechnology. 43: 53-61.

Li, D. y Suh, S. 2019. Health risks of chemicals in consumer products: A review. Environment International. 123: 580-587.

Mackay, D., Celsie, A.K.D., Powell, E. y Parnis, J.M.P. 2018. Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective. Environmental Science: Processes and Impacts. 20: 72-85.

Martínková, L., Kotik, M., Marková, E. y Homolka, L. 2016. Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: A review. Chemosphere. 149: 373-382.

Mikolajewska, K., Stragierowicz, J. y Gromadzinska, J. 2015. Bosphenol A-applications, sources of exposure and potential risks in infants, children and pregnant women. International Journal of Occupational Medicine and Environmental Health. 28: 209-241.

Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemestry. 31: 426-428.

Neiverth de Freitas, E., Bubna, G.A., Brugnari, T., Kato, C.G., Nolli, M., Rauen, T.G., Peralta-Muniz Moreira, R. de F. y Peralta, R.A. 2017. Removal of bisphenol A by laccases from Pleurotus ostreatus and Pleurotus pulmonarius and evaluation of ecotoxicity of degradation products. Chemical Engineering Journal. 330: 1361-1369.

Nitheranont, T., Watanabe, A., Suzuki, T., Katayama, T. y Asada, Y. 2011. Decolorization of synthetic dyes and diodegradation of bisphenol A by laccase from the edible mushroom, Grifola frondosa. Bioscience, Biotechnology and Biochemistry. 75: 1845-1847.

Nur, A., Yee, S., Hirawaty, N. y Zaharin, A. 2019. Quantification of multi-classes of endocrine-disrupting compounds in estuarine wáter. Envirionmental Pollution. 249: 1019-1028.

Ortega-Ávila, R. 2015. Búsqueda de los genes que codifican para lacasas e isoenzimas producidas por la cepa PoB de Pleurotus ostreatus en dos condiciones de cultivo sobre agar. Tesis de Licenciatura. Universidad Autónoma de Tlaxcala. Tlaxcala, México.

Petrie, B., Lopardo, L., Proctor, K., Youdan, J., Barden, R. y Kasprzyk-Hordern, B. 2019. Assessment of bisphenol-A in the urban water cycle. Science of the Total Environment. 650: 900-907.

Ribeiro, E., Ladeira, C. y Viegas, S. 2017. Occupational exposure to bisphenol A (BPA): A reality that still needs to be unveiled. Toxics. 5: 1-16.

Song, H.H., Hyoung, T.C. y Hong-Gyu, S. 2007. Biodegradation of endocrine-disrupting bisphenol A by white rot fungus. Journal Microbiology and Biotechnology. 17: 1147-1151.

Staples, C., Hoeven, N. Van Der, C.K., Mihaich, E., Woelz, J. y Hentges, S. 2018. Distributions of concentrations of bisphenol A in North American and European surface waters and sediments determined from 19 years of monitoring data. Chemosphere. 201: 448-458.

Tlecuitl-Beristain, S., Sánchez, C., Loera, O., Robson, G.D. y Díaz-Godínez, G. 2008. Laccases of Pleurotus ostreatus observed at different phases of its growth in submerged fermentation: production of a novel laccase isoform. Mycological Research. 112: 1080-1084.

Traversa, A., Loffredo, E., Gattullo, C.E. y Senesi, N. 2012. Biodecontamination of aqueous substrates from bisphenol A by ligninolytic fungi. Journal of Environmental Science and Health, Part A. 4529: 1407-1412.

Turner, M.E.J., Bradley, E.L.J., Kirk, K.A. y Pruitt, K.M. 1976. Theory of growth. Mathematical Biosciences. 29: 367-373.

Viniegra-González, G., Favela-Torres, E., Aguilar, C.N., Rómero-Gomez, S. de J., Díaz-Godínez, G. y Augur, C. 2003. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochemical Engineering Journal. 13: 157-167.

Wang, Q., Chen, M., Shan, G., Chen, P., Cui, S., Yi, S. y Zhu, L. 2017. Bioaccumulation and biomagni fi cation of emerging bisphenol analogues in aquatic organisms from Taihu Lake, China. Science of the Total Environment. 598: 814-820.

Yeung, E.H., Bell, E.M., Sundaram, R., Ghassabian, A., Ma, W., Kannan, K. y Louis, G.M. 2019. Examining endocrine disruptors measured in newborn dried blood spots and early childhood growth in a prospective cohort. Obesity. 27(1): 145-151.

Zhang, C., Li, M., Chen, X. y Li, M. 2015. Edible fungus degrade bisphenol A with no harmful effect on its fatty acid composition. Ecotoxicology and Environmental Safety. 118: 126-132.

Zhang, H., Zhang, Y., Li, J. y Yang, M. 2019. Occurrence and exposure assessment of bisphenol analogues in source water and drinking water in China. Science of the Total Environment. 655: 607-613.

Published

2021-06-24

How to Cite

Pérez Montiel, G., Torres García, J. L., Juarez Santa Cruz, L., Cortes Espinosa, D. V., Rubio Piña, J. A., & Ahuactzin Pérez , M. (2021). Growth and production of laccase enzymes of Pleurotus ostreatus during the degradation process of bisphenol a. Biotecnia, 23(2), 39–46. https://doi.org/10.18633/biotecnia.v23i2.1357

Issue

Section

Research Articles

Metrics