Trichoderma harzianum and spinosyn in the control of wheat weevil Sitophilus granarius (L. 1758)
DOI:
https://doi.org/10.18633/biotecnia.v25i1.1819Keywords:
Insect pests, stored grains, postharvest, bioproducts, biological controlAbstract
Sonora, a state located in northwestern Mexico, stands out worldwide for being a producer and supplier of grains and forages, mainly wheat. The existing agroclimatic and technological conditions in the regions where wheat is grown in Sonora are favorable. There are seasons and spaces where pests become a problem and one of them is in storage. Sitophilus granarius, is a small insect which, under favorable conditions, affects up to 85% of stored wheat. Research efforts are being directed towards the development of bioproducts based on fungi or bacteria with entomopathogenic action, with potential utility as bioinsecticides. Studies related to Trichoderma harzianum and spinosyn in the control of the beetle pest of stored grains are minimal and it is in this context, the objective of this work was to evaluate the effect of Trichoderma and spinosyn in the control of Sitophilus granarius in stored wheat. For the development of the study, the grain of all the treatments was first impregnated with spinosyn; three concentrations (three treatments) of T. harzianum conidia were sprayed (T1:103, T2:106 y T3:109 conidias.mL-1), with five repetitions for each treatment. In the study they were considered controls without treatments. The exposure times of the insect to the treatments were 72, 144 and 216 h. The mortality rate was calculated. To establish the differences between treatments and controls, analysis of variance was performed. The results show that Trichoderma harzianum has a bioregulatory effect on S. granarius, which is significant when combined with spinosyn. This bioregulatory effect is emphasized when higher concentrations of 109 condia/mL are inoculated. Studies related to coinoculation and the use of spinosyn should be carried out, as well as evaluating the viability of the seed and the organoleptic properties of the grain.
Downloads
References
Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. Journal of Econ. Entom. 18:265-267. doi: 10.4067/S0718
Acevedo, M., Zurn, J., Molero, G., Singh, P. 2018. The role of wheat in global food security. In: Udaya S., editor. Agricultural Development and Sustainable Intensification: Technology and Policy Challenges in the Face of Climate Change. Routledge; London, UK.pp. 81–110.
Alamri, S., Mostafa, Y. S., Hashem, M., Alrumman, S. 2016. Enhancing the Biocontrol Efficiency of Trichoderma harzianum JF419706 through Cell Wall Degrading Enzyme Production. International Journal of Agriculture and Biology. 18(4): 765-772.
Anderson, M. W. 1988. Biotechnology, alternative agriculture, and public research in Maine.
University of Maine, Ag. Experiment Station, Vol. 1, No. 4.
Arévalo E., Cayotapa J.C., Olivera D., Gárate M., Trigoso E., Do Bomfim Costa, León B. 2017. Optimization of substrates for conidia production of Trichoderma harzianum by Solid fermentation in the region of San Martin. Peru. Rev. investig. Altoandin. 19(2):123-145.
Bond, J.G., Marina, C.F., and Williams, T. 2004. The naturally-derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae. Med. Vet. Entom. 18, 50-56.
Cisneros, J., Goulson, D., Derwent, L.C., Penagos, D.I., Hernández, O. Williams, T. Toxic effects of spinosad on predatory insects. Biological Control 23, 156-163, 2002.
Cañedo, V. and Ames, T. 2004. Manual de Laboratorio para el Manejo de Hongos Entomopatógenos. Lima, Perú; Centro Internacional de la Papa (CIP), Lima, Perú, 62 p.
Cedeño D. Control de Meloidogyne spp. en pepino (Cucumis sativa) con Micorriza Vesículo Arbuscular (VAM) (Mycoral®), Trichoderma harzianum y Paecilomyces lilacinus. 2005. [Tesis para optar el Grado Académico de Licenciado]. Honduras: Zamorano; 167 p.
Delgado, P. A. M.; Murcia-Ordoñez, B. 2011. Hongos entomopatógenos como alternativa para el control biológico de plagas. Ambi-Agua, Taubaté. 6(2): 77-90.
De Oliveira, J., Campos, E., Bakshi, M., Abhilash, P., and Fraceto, L. 2014. Application of nanotechnology for the encapsulation of botanical insecticides for sus-tainable agriculture: Prospects and promises. Biotech. Adv.32(8):1550-1561. https://doi.org/10.1016/j.biotechadv.2014.10.010
Fornal, J., Jeliński, T., Sadowska, J., Grudas, S., Nawrot, J., Niewiada, A., Warchalewski, J.R., Błaszczak, W. 2007. Detection of granary weevil Sitophilus granarius (L.) eggs and internal stages in wheat grain using soft X-ray and image analysis. J. Stored Prod. Res.43:142–148. doi: 10.1016/j.jspr.2006.02.003.
Hernández, T. and Orozco, S. 2019. Nanoformulations of botanical insecticides for thecontrol of agricultural pests. Rev. Fac. Cs´ - Univ. Nal. Col. 9(1)2357-5749. https://doi.org/10.15446/rev.fac.cienc.v9n1.81401
Iturralde Garcia, R.D. Efecto de las atmósferas modificadas sobre el insecto Callosobruchus maculatus Fab. En Garbanzo almacenado. Tesis de Maestro en Ciencias. Universidad de Sonora. 86 p., 2015.
Infante-Rodríguez, D.A., Novelo-Gutiérrez, R., Mercado, G. Williams, T. 2011. Spinosad toxicity to Simulium spp. larvae and associated aquatic biota in a coffee-growing region of Veracruz State, Mexico. J. Med. Entom. 48: 570-576.
Kamali, N., Sahebani, N., and Pourjam, E. 2016. Effect of Trichoderma harzianum BI on chitinase and glucanase activity in tomato roots infected with Meloidogyne javanica and Fusarium oxysporum f. sp. lycopersici. Iranian Journal of Plant Pathology, 52(1), 165-187, 2016.
Kumar, P.A., Malik, V.S., Sharma, R.P. 1996. Insecticidal proteins of Bacillus thuringiensis». Advances in Applied Microbiology. 42: 1-43.
Marina, C.F., Bond, J.G., Muñoz, J., Valle, J., Chirino, N. Williams, T. 2012. Spinosad: a biorational mosquito larvicide for use in car tires in southern Mexico. Parasites & Vectors. 5: 95-112.
Marina, C.F., Bond, Jg, Muñoz, J., Valle, J., Novelo-Gutiérrez, R., Williams, T. 2014. Efficacy and non-target impact of spinosad, Bti and temephos larvicides for control of Anopheles spp. in an endemic malaria region of southern Mexico. Parasites & Vectors. 7: 5-88.
Marina, C.F., Bond J.G., Muñoz, J. Valle, J., Quiroz-Martínez, H., Torres-Monzón, J.A. Williams, T. Efficacy of larvicides for control of dengue, Zika and chikungunya vectors in an urban cemetery in southern Mexico. Parasit. Res. 117:1941–1952.
Martínez, M. A., Roldán, A. and Pascual, J.A. 2011. Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianumunder conventional and low input fertilization field condition in melon crops: Growth response and Fusarium wilt biocontrol. App. Soil Ecol. 47: 98-105.
Matthews Eg, Lawrence Jf, Bouchard P, Steiner We Jr, Ślipiński Sa. Tenebrionidae Latreille, 1802. In: Leschen RAB, Beutel RG, Lawrence JF. (Eds) Handbook of Zoology. Volume IV, Arthropoda: Insecta. Part 39, Coleoptera, Beetles. Volume 2: Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). Walter de Gruyter, Berlin, 574–659, 2010.
Marina, C., Bond, J., Muñoz, J., Valle, J., Novelo-Gutiérrez, R. and Williams, T. 2014. Efficacy and non-target impact of spinosad, Bti and temephos larvicides for control of Anopheles spp. in an endemic malaria region of southern Mexico. Parasites and Vectors 7:55-83.
Mebarkia, A., Rahbe, Y., Guechi, A., Bouras, A. 2010. Susceptibility of twelve soft wheat varieties (Triticum aestivum) to Sitophilus granarius (L.) (Coleoptera: Curculionidae) Agric. Biol. J. N. Am.1:571–578.
Méndez, W.A., Valle, J., Ibarra, J.E., Cisneros, J., Penagos, D.I. and Williams, T. 2002. Spinosad and nucleopolyhedrovirus mixtures for control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. Biological Control 25, 195-206.
Mukherjee, M., Mukherjee, P., Horwitz, B., Zachow, C., Berg, G. and Zeilinger, S. 2012. Trichoderma–Plant–Pathogen Interactions: Advances in Genetics of Biological Control. Indian Journal of Microbiology. 52(4): 522-529.
Monzón, A. 2001. Producción, uso y control de calidad de hongos entomopatógenos en Nicaragua. Manejo Integrado de Plagas CATIE. Turrialba. 54: 1-12.
Motta-Delgado, P. A. and Murcia-Ordoñez, B. 2011. Hongos entomopatógenos como alternativa para el control biológico de plagas. Revista Ambiente & Água - An Interdisciplinary J. App. Sc. 6(2): 1-14.
Nenaah, G., Ibrahim, S., and Al-Assiuty, B. 2015. Chemical composition, insecticidal activityand persistence of three Asteraceae essential oils and their nanoemulsions against Callosobruchus ma-culatus (F.). J. Stored Prod. Res. 61:9-16. https://doi.org/10.1016/j.jspr.2014.12.007
Nietupski, M., Ludwiczak, E., Cabaj, R., Purwin, C. and Kordan, B. 2021. Fatty Acids Present in Wheat Kernels Influence the Development of the Grain Weevil (Sitophilus granarius L.). Insects. 12(9):806-819. doi: 10.3390/insects12090806.
Laskowski, W., Górska-Warsewicz, H., Rejman, K., Creuzot, M., Zwolińska, J. 2019. How Important are Cereals and Cereal Products in the Average Polish Diet? Nutriens.11:679. doi: 10.3390/nu11030679.
Ortiz-Urquiza A, Riveiro-Miranda L, Santiago-Álvarez C, Quesada-Moraga E. 2010. Insect-toxic secreted proteins and virulence of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol. 105, 270–278, 2010.
Pérez, C.M., Marina, C.F., Bond, J.G., Rojas, J.C., Valle, J. Williams, T. 2007. Spinosad, a naturally-derived insecticide, for control of Aedes aegypti: efficacy, persistence and oviposition response. J. Med. Entom. 44:631- 638.
Porcuna, C.J. 2019. Control de plagas y enfermedades en agricultura ecológica. Sociedad Española de Agricultura Ecológica, Madrid España. 80p.
Puertas, A., de la Noval, B., Martínez, B., Miranda, I., Fernández, F. and Hidalgo, L. 2006. Interacción de Pochonia chlamydosporia var. catenulata con Rhizobium sp., Trichoderma harzianum y Glomus clarum en el control de Meloidogyne incognita. Rev. Prot. Veg. 21:80-89.
Riudavets, J., Lucas, E., Pons, M. 2002. Insects and Mites of Stored Products in the Northeast of Spain. International Organization for Biological and Integrated Control /West Paleartic Regional Section. 25:41-44.
Ruiz, L., Flores, S., Cancino, J., Arredondo, J., Valle, J., Díaz-Fleischer, F., Williams, T. Lethal and sublethal effects of spinosad-based GF-120 bait on the tephritid parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae). Biological Control 44, 296-304, 2008.
SADER. Secretaria de Agricultura, Ganadería, Recursos Hidráulicos, Pesca y Acuacultura. ¿Sabías que? Sonora es líder en la producción de trigo y grano. 1-4, 2022. http://oiapes.sagarhpa.sonora.gob.mx/notas/econo/prod-trigo.pdf
SADER. Secretaría de Agricultura y Desarrollo Rural- SAGARPA. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Ficha Técnica sobre Actividades Agrícolas, Pecuarias y de Traspatio – Almacenamiento y Conservación de Granos y Semillas. 2022. Disponible en: http://www.sagarpa.gob.mx/desarrolloRural/Publicaciones/Paginas/FichasTecnicas.aspx. fecha:=20/04/2022.
Shakeri Joe And Howard A.Foster. 2007. Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enz. Microb. Tech. 40(4):961-968.
Singh, B., Kaur, A. 2018. Control of insect pests in crop plants and stored food grains using plant saponins: A review. LWT—Food Sci. Technol. 87:93–101. doi: 10.1016/j.lwt.2017.08.077. -
Sokal, R. And James R. Biometry: the principles and practice of statistics in biological research. (3nd edn). Freeman & Co, San Francisco, CA., 878 p., 1988.
Tamez, G., Galán,W., Medrano, R., García, G., Rodríguez, P., Gómez, F. y Tamez, G. 2001. Bioinsecticidas: su empleo, producción y comercialización en México. Ciencia UANL. IV(2):143-152.
Vega Fe. 2008. Insect pathology and fungal endophytes. J Invertebr Pathol. 98, 277–279.
Wong-Corral, F., Manríquez, V., Vásquez, V., Buitrón, L., Cabral, T., Barrales, H., Borboa-Flores, J., Cinco-Moroyoqui, F. y Rueda Puente, E. 2017. Aceite de ricinus para el contro de Rhyzoprta dominica en tigo almacenado. Biotecnia XIX:23-33. https://biotecnia.unison.mx/index.php/biotecnia/article/view/411
Zehler, J.A. 2000. Chemical Control ff Stored Product Insects With Fumigants and Residual Treatments. Crop Protection. 19: 577 – 582.
Zilkowski, B. and Cossé, A. 2015. A Culture Method for Darkling Beetles, Blapstinus spp. (Coleoptera:Tenebrionidae). J Econ Entomol. 108(3):1010-1013.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.