Morpho-cultural characterization and genetic and molecular variability of Trichoderma isolates

Variability of Trichoderma isolates

Authors

  • D Ynfante Martínez National Center for Agricultural Health. San Jose de las Lajas, Mayabeque, Cuba https://orcid.org/0000-0002-0800-5688
  • B Martínez-Coca National Center for Agricultural Health. San Jose de las Lajas, Mayabeque, Cuba
  • B Peteira-Delgado National Center for Agricultural Health. San Jose de las Lajas, Mayabeque, Cuba
  • Y Reyes-Duque Department of Biology and Plant Health, Agrarian University of Havana "Fructuoso Rodríguez Pérez" (UNAH). San Jose of the Lajas, Mayabeque, Cuba.
  • K Gil National Laboratory of Genomics for Biodiversity, Langebio, Center for Research and Advanced Studies, Cinvestav, National Polytechnic Institute, IPN, Irapuato, Guanajuato, Mexico
  • J Simpson National Laboratory of Genomics for Biodiversity, Langebio, Center for Research and Advanced Studies, Cinvestav, National Polytechnic Institute, IPN, Irapuato, Guanajuato, Mexico
  • AHerrera-Estrella National Laboratory of Genomics for Biodiversity, Langebio, Center for Research and Advanced Studies, Cinvestav, National Polytechnic Institute, IPN, Irapuato, Guanajuato, Mexico

DOI:

https://doi.org/10.18633/biotecnia.v25i2.1890

Keywords:

morphometric characterization, vegetative compatibility, genetic variability

Abstract

The objective of this work was to characterize Trichoderma isolates based on morphological and cultural characters, their vegetative compatibility and molecular variability. Morphological descriptions were made from microscopic observations of microcultures, according to Rifai, Gams and Bissett. The vegetative compatibility relationships were macroscopically evaluated, and the type of reaction (compatible or incompatible) was determined. The genetic variability of isolates was determined by using the RAPD technique; with the results generated, a dendrogram was constructed based on Jaccard’s similarity coefficient and the analyses carried out using FreeTree software. The isolates exhibited similar morphological characteristics, however, they presented differences in the coloration of the colonies and the morphometry of fungal structures. The isolates showed vegetative compatibility with the species Trichoderma viride, Trichoderma asperellum and Trichoderma atroviride, as among them, which shows the genetic closeness between these genotypes. The eleven RAPD primers generated a total of 92 reproducible bands. Of them, 65 were polymorphic, for 70.7 % polymorphism; only OPH-19 showed 100 % polymorphism. The cluster analysis by UPGMA showed intraspecific variability, forming four groups. Specific individual bands were detected for isolates T.13, T.17, T.75 and T.78, important for designing specific primers for authentication, protection and monitoring in productive systems.

Downloads

Download data is not yet available.

References

Barcellos, F.G., Hungria, M. y Pizzirani-Kleiner, A. 2011. Limited Vegetative Compatibility as a cause of Somatic Recombination in Trichoderma pseudokoningii. Brazilian Journal of Microbiology. 42: 1625-1637.

Bissett, J., Gams, Walter., Jaklitsch, W. y Samuels, J.G. 2015. Accepted Trichoderma names in the year. IMA Fungus. 6 (2): 263-95.

Chandulal, K., John, Priya. y Gopal, C. 2016. Genetic Diversity of Trichoderma sp. obtained from tomato rhizosphere using RAPD. International Journal of Science, Environment And Technology. 5 (4): 2101-2108.

Cook, R.J. y Baker, K.F. 1983. The nature and practice of biological control of plant pathogens. Minnesota: American Phytopathological Society. 539 p.

Cruz-Triana, A., Rivero-González, D., Infante-Martínez, D., Echevarría, H.A. y Martínez-Coca, B. 2018. Manejo de hongos fitopatógenos en Phaseolus vulgaris L. con la aplicación de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg. Revista de Protección Vegetal. 33 (3):1-7.

Druzhinina, I. y Kubicek, C.P. 2005. Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J Zhejiang Univ SCI. 6B (2): 100-112.

Druzhinina, I., Kopchinskiy, A. y Kubicek, C. 2006. The first 100 Trichoderma species characterized by molecular data. Mycoscience. 47: 55-64.

Duarte, L.Y., Infante, M.D. y Martínez, C.B. 2021. Biocontrol of Trichoderma spp. strains against Fusarium spp. isolates from beans (Phaseolus vulgaris L.). Revista de Protección Vegetal. 36 (2):1-5.

El_Komy, M.H., Saleh, A.A., Eranthodi, A. y Molan, Y.Y. 2015. Characterization of Novel Trichoderma asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium Wilt. Journal Plant Pathology. 31 (1) : 50-60.

El-Sobky, M.A., Fahmi, A.I., Ragaa, A.E. y El-Zanaty, A.M. 2019. Genetic Characterization of Trichoderma spp. Isolated from Different Locations of Menoufia, Egypt and Assessment of their Antagonistic Ability. Journal of Microbial & Biochemical Technology. 1 Iss. 11 (409): 9-23.

Gakegne, E.R. 2018. Selección de cepas de Trichoderma y Pseudomonas para el control de Alternaria solani Sor. en papa (Solanum tuberosum L.). Tesis en opción al grado de doctor en Ciencias Agrícolas. Mayabeque, Cuba.

Galdames, R. 2001. Análisis genético-molecular de la diversidad del hongo patógeno Sclerotium cepivorum Berk., y del biocontrolador Trichoderma spp. Tesis en opción al grado de doctor en Ciencias - Biotecnología de Plantas. Irapuato, Gto, México.

Gallegos-Morales, G., Espinoza-Ahumada, C.A., Figueroa-Reyes, J., Méndez-Aguilar, R., Rodríguez-Guerra, R., Salas- Gómez, A.L. y Peña-Ramos, F.M. 2022. Compatibilidad de especies de Trichoderma en la producción y biocontrol de marchitez del chile. Ecosistemas y Recursos Agropecuarios. 9: (2): e3066.

Gams, W. y Bisset, J. 1998. Morphology and identification of Trichoderma. In: Kubicek C, Harman G. (eds.), p. 3-34, Trichoderma and Gliocladium Volume 1: Basic biology, taxonomy and genetics. Taylor & Francis, London, UK.

González, I., Infante, D., Martínez, B., Arias, Y., González, N., Miranda, I. y Peteira, B. 2012. Induction of chitinases and glucanases in Trichoderma spp. strains intended for biological control. Biotecnología Aplicada. 29: 12-16

Hampl, V., Pavlícek, A. y Flegr, J. 2001. Construction and bootstrap analysis of DNA fingerprinting-based phylogenetic trees with the freeware program Freetree: application to trichomonad parasites. International Journal of Systematic and Evolutionary Microbiology. 51: 731–735. http://www.natur.cuni.cz/_flegr/freetree.htm.

Haouhach, S., Karkachi, N., Oguiba, B., Sidaoui, A., Chamorro, I., Kihal, M. y Monte, E. 2020. Three New Reports of Trichoderma in Algeria: T. atrobrunneum, (South) T. longibrachiatum (South), and T. afroharzianum (Northwest). Microorganisms. 8 (1455): 2-14.

Hassan, M.M., Farid, M.A. y Gaber, A. 2019. Rapid identification of Trichoderma koningiopsis and Trichoderma longibrachiatum using sequence characterized amplified region markers. Egyptian Journal of Biological Pest Control. 29:13.

Hermosa, M., Grondona, I., Iturriaga, E., Diaz-Minguez, J., Castro, C., Monte, E. y Garcia-Acha, I. 2000. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Applied Environmental Microbiology. 66: 1890-1898.

Hernández, A., Jiménez, M., Arcia, A., Ulacio, D. y Méndez, N. 2013. Caracterización molecular de doce aislamientos de Trichoderma spp. mediante RAPD y rADN-ITS. Bioagro. 25 (3): 167-174.

Hewedy, O.A., Abdel, L.K.S., Seleiman, M.F., Shami, A., Albarakaty, F.M. y El-Meihy, R.M. 2020. Phylogenetic Diversity of Trichoderma Strains and Their Antagonistic Potential against Soil-Borne Pathogens under Stress Conditions. Biology. 9: 189.

Index Fungorum. [Consultado: Abril de 2021]. 2021. Disponible en: http://www.catalogueoflife.org/col/search/scientific/genus/Trichoderma/fossil/1/match/1/page/2 1/sort//direction/asc.

Infante, D., Reyes, Y., Peteira, B. y Martínez, B. 2015. Variabilidad fisiológica y patogénica de cepas de Trichoderma asperellum Samuels, Lieckfeldt & Nirenberg. Métodos en Ecología y Sistemática. 10 (3): 41-52.

Kumar, M. y Sharma, P. 2011. Molecular and morphological characters: An appurtenance for antagonism in Trichoderma spp. African Journal of Biotechnology. 10 (22): 4532-4543.

Khattak, B., Saifullah, S.H., Ahmad, M., Ali, A., Junaid, M., Khan, I.A., Khan, T.A. y Hussain, M. 2018. Genetic Relatedness among the Indigenous Isolates of Trichoderma harzianum, using RAPD and their Nematocidal Capabilities against Meloidogyne javanica. Journal of Agricultura. 34: 486-493.

Lelay, Y., Ruano-Rosa, D. y López-Herrera, C. 2007. Estudio de compatibilidad in vitro de aislados monoconídicos de Trichoderma sp. potenciales agentes de biocontrol de la podredumbre blanca del aguacate. Actas VI Congreso Mundial del Aguacate.

Lieckfeldt, E., Samuels, G., Nirenberg, H. y Petrini O.A. 1999. Morphological and Molecular Perspective of Trichoderma viride: Is It One or Two Species? Applied and Environmental Microbiology. 65 (6): 2418-2428.

Lübeck, M., Poulsen, K., Lübeck, P., Jensen, F. y Thrane, U. 2000. Identification of Trichoderma strains from building materials by ITS1 ribotyping, UP-PCR fingerprinting and UP-PCR cross hybridization. FEMS Microbiology Letters. (185): 129-134.

Moo Koh, F.A., Alejo, J.C., Ramírez, A.R., Suárez, J.T., Angulo, G. y Islas- Flores, I.R. 2018. Incompatibilidad interespecífica de especies de Trichoderma contra Meloidogyne incognita en Solanum lycopersicum. Scientia Fungorum. 47: 37-45.

Pandya, J.R., Sabalpara, A.N. y Mahatma, M. 2017. Randomly Amplified Polymorphic DNA Analysis of Native Trichoderma Isolates. Asian Journal of Applied Science and Technology. 1 (5): 147-150.

Ranga, R.A., Ahammed, K.S. y Patibanda, A.K. 2017. Genetic Diversity of Trichoderma sp. from Rhizosphere Regions of Different Cropping Systems using RAPD Markers. International Journal of Current Microbiology and Applied Sciences. 6 (7): 1618-1624.

Rifai, A. 1969. A revision of the genus Trichoderma. Mycological. 116: 1-56.

Sambrook, J., Fritsch, E.F. y Maniatis, T. 1989. Molecular Cloning: a Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory, Cold Spring Harbor NY.

Samuels, G., Petrini, O., Kuhls, K., Lieckfeldt, E. y Kubicek, C. 1998. The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. Stud. Mycological. 41: 1-54.

Samuels, G., Lieckfeldt, E. y Nirenberg, H. 1999. Trichoderma asperellum, a new species with warted conidia, and redescription of Trichoderma viride. Sydowia. 51 (1): 71-88.

Samuels, G., Ismaiel, A., Bon, M., De Respinis, S. y Petrini, O. 2010. Trichoderma asperellum sensu lato consists of two cryptic species. Mycological. 102 (4): 944-966.

Sánchez-García, B.M., Espinosa-Huerta, E., Villordo-Pineda, E., Rodríguez-Guerra, R. y Mora-Avilés, M.A. 2017. Identificación molecular y evaluación antagónica in vitro de cepas nativas de Trichoderma spp. sobre hongos fitopatógenos de raíz en frijol (Phaseolus vulgaris L.) Cv. Montcalm Agrociencia. 51: 63-79.

Sambrook, J., Fritsch, E.F. y Maniatis, T. 1989. Molecular Cloning: a Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory, Cold Spring Harbor NY.

Stocco, M.C. 2014. Control biológico de Mycosphaerella graminicola, patógeno del trigo, con cepas de Trichoderma harzianum caracterizadas por su morfología, fisiología, actividad enzimática y molecular. Trabajo de Tesis para optar por el título de Doctor en Ciencias Naturales. Universidad Nacional de la Plata.

Watanabe, S., Kumakura, K., Kato, H., Iyozumi, H., Togawa, M. y Nagayama, K. 2005. Identification of Trichoderma SKT1, a biological control agent against seed borne pathogens of rice. Journal of General Plant Pathology. 71: 351-356.

Published

2023-05-18

How to Cite

Ynfante Martínez, D., Martínez-Coca, M.-C., Peteira-Delgado, B., Reyes-Duque, Y. ., Gil, K., Simpson, S., & Herrera-Estrella, A. (2023). Morpho-cultural characterization and genetic and molecular variability of Trichoderma isolates: Variability of Trichoderma isolates. Biotecnia, 25(2), 194–203. https://doi.org/10.18633/biotecnia.v25i2.1890

Issue

Section

Research Articles

Metrics