Growth, biomass, yield, and components of canola (Brassica napus L.) in resonse to nitrogen source

Growth, biomass, yield, and components of canola

Authors

  • CA López-Arias Posgrado en Botánica, Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco km 36.5, municipio de Texcoco, estado de México, México, CP. 56230.
  • JAS ESCALANTE ESTRADA Posgrado en Botánica, Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco km 36.5, municipio de Texcoco, estado de México, México, CP. 56230.
  • MT RODRÍGUEZ-GONZÁLEZ Posgrado en Botánica, Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco km 36.5, municipio de Texcoco, estado de México, México, CP. 56230.
  • C AGUILAR CARPIO Posgrado en Botánica, Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco km 36.5, municipio de Texcoco, estado de México, México, CP. 56230.

DOI:

https://doi.org/10.18633/biotecnia.v25i3.2003

Keywords:

PRODUCTION, NITROGEN, NUTRITION, BRASSICACEAE

Abstract

Canola is an oilseed crop of great worldwide importance. Nitrogen is one of the elements that increases crop production; therefore, it is important for producers to know the nutritional requirements of this crop and what type of source to use. The objective of the study was to determine the effect of the nitrogen source on the growth, biomass, and
canola yield. The canola cultivar “Canorte” was sown during rainfall season. Four treatments were used (control, nitrogen fertilizer in the form of urea, phosphonitrate and ammonium sulfate). To evaluate growth and crop yield, plant height, leaf area, total biomass, harvest index, yield, and its components  were recorded. The crop did not present differences in plant height, total biomass, harvest index and grain yield between the nitrogen sources used, in comparison to the control. Ammonium sulfate generated a greater leaf area and number of  bunches compared to the other fertilizers, while the siliques number also increased due the effect of phosphonitrate. Nitrogen sources promoted a positive effect on plant growth and grain yield. The components that presented the greatest relationship with yield was the total biomass.

Downloads

Download data is not yet available.

Author Biography

JAS ESCALANTE ESTRADA, Posgrado en Botánica, Colegio de Postgraduados, Campus Montecillo, Carretera México-Texcoco km 36.5, municipio de Texcoco, estado de México, México, CP. 56230.

Profesor-Investigador

Posgrado de Botánica

References

Al-Solaimani, S., Alghabari, F. y Zahid, I.M. 2015. Effect of different rates of nitrogen fertilizer on growth, seed yield, yield components and quality of canola (Brassica napus L.) under arid environment of Saudi Arabia. International Journal of Agronomy and Agricultural Research. 6(4): 268-274.

Azcón-Bieto, J. y Talón, M. 2008. Fundamentos de Fisiología Vegetal. McGraw-Hill.

Bybordi, A. y Ebrahimian, E. 2013. Growth, yield, and quality components of canola fertilized with urea and zeolite. Communications in soil Science and Plant Analysis. 44(19): 2896-2915. https://dx.doi.org/10.1080/00103624.2013.823986

Bayer, E.P., Hurgobin, B., Golicz, A.A., Kenneth, C.C.K., Yuan, Y., Tyng, L.H., Renton, M., Meng, J., Li., R., Long, Y., Zou, J., Bancroft, I., Chalhoub, B., King, J. G., Batley, J. y Edwards, D. 2017. Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnology Journal. 15(12): 1602-1610.

Burzaco, J.P., Ciampitti, I.A. y García, O.F. 2019. Mejores prácticas de manejo para la nutrición del cultivo de Colza-Canola: Una revisión. IPNI. 13: 1-8.

Carrie, K.A. 2017. Identifying Canola Growth Stages. Plant and Soil Sciences. 2: 1-8.

Chamorro, A.M., Tamagno, L.N. y Sarandón, S.J. 2017. Mezcla de cultivares de colza canola (Brassica napus L.): una alternativa para aumentar la diversidad cultivada en sistemas extensivos de clima templado en transición agroecológica en Argentina. Revista Brasileira de Agroecología. 12(1): 010-018.

Escalante-Estrada, J.A.S., Rodríguez-González, M.T. y Escalante-Estrada, Y.I. 2016. Rendimiento, eficiencia en uso del agua en canola en función del nitrógeno y distancia entre hileras. Revista Mexicana de Ciencias Agrícolas. 7(6): 1249. https://doi.org/10.29312/remexca.v7i6.174

Ferreira, G. y Ernst, O. 2014. Diagnóstico del estado nutricional del cultivo de colza (Brassica napus) en base a curvas de dilución de nitrógeno y azufre. Agrociencia Uruguay. 18(1): 75–85. https://doi.org/10.31285/AGRO.18.441

García, E. 2004. Modificaciones al Sistema de Clasificación Climática de Köppen. Ed. Serie libros.

Gill, A.R., Zang, L., Ali, B., Farooq, A.M., Cui, P., Yang, S., Ali, S. y Zhou, W. 2015. Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere. 120: 154-164. https://doi.org/10.1016/j.chemosphere.2014.06.029

Gómez, N.V., Miralles, D.J., Mantese, A.I., Menéndez, Y.C. y Rondanini, D.P. 2018. Colza: Un cultivo con historia en la FAUBA. Agronomía y Ambiente. 38(1): 23-26.

Kaefer, J.E., Guimarães, V.F., Richart, A., Tomm, G.O. y Müller, A.L. 2014. Produtividade de grãos e componentes de produção da canola de acordó com fontes e doses de nitrogênio. Pesquisa Agropecuária Brasileira. 49(4): 273–280. https://doi.org/10.1590/S0100-204X2014000400005

Kaefer, J.E., Richart, A., Nozaki, M.H., Daga, J., Campagnolo, R. y Follmann, P.E. 2015. Canola response to nitrogen sources and split application. Revista Brasileira de Engenharia Agrícola e Ambiental. 19(11): 1042–1048. https://doi.org/10.1590/1807-1929/agriambi.v19n11p1042-1048

Larios-González, R.C., García, C.L., Jerónimo, R.M., Avalos, E.C. del S. y Castro, S.J.R. 2021. Pérdidas de nitrógeno por volatilización a partir de dos fuentes nitrogenadas y dos métodos de aplicación. Siembra. 8(2): e2475. https://doi.org/10.29166/siembra.v8i2.2475

López, A.C.A., Escalante-Estrada, J.A.S., Rodríguez, G.M.T., Conde, M.V.F., y Quero, C.A.R. 2019. Análisis de crecimiento y rendimiento de canola en función de la fuente nitrogenada. Academia Journals Morelia. 11(2): 1523-1527.

Ma, B.L. y Zheng, Z.M. 2016. Relationship between plant nitrogen and phosphorus accumulations in a canola crop as affected by nitrogen management under ample phosphorus supply conditions. Canadian Journal of Plant Science. 96(5): 853–866. https://doi.org/10.1139/cjps-2015-0374

Öztürk, Ö. 2010. Effects of source and rate of nitrogen fertilizer on yield, yield components and quality of winter rapeseed (Brassica napus L.). Chilean Journal of Agricultural Research. 70(1): 132–141. http://dx.doi.org/10.4067/S0718-58392010000100014.

Panozzo, L.E., Zuchi, J., Da Silva, F.D., Barros, P.L., Dos Santos, D.D.C.F., Silva, B.W. y Tomm, G.O. 2014. Evaluation of some hybrids of canola in function of sowing dates in Viçosa, MG, Brazil. African Journal of Agricultural Research. 9(32): 2488-2494. https://doi.org/10.5897/AJAR2014.8876

Quintana-Chimal, M.A., Estrada-Campuzano, G., Martínez-Rueda, C.G., y Domínguez-López, E.J.M.A. 2013. Variabilidad genotípica en atributos ecofisiológicos del rendimiento y calidad industrial de canola. Terra Latinoamericana. 31(1): 47–56.

Salgado, G.S. y Núñez, E.R. 2010. Manejo de fertilizantes químicos y orgánicos. Mundi Prensa México, S. A. de C. V.

Sistema de Información Agropecuaria (SIAP). 2019. Sistema de información agropecuaria de consulta. Secretaría de Agricultura, Ganadería y Desarrollo Rural (Sagarpa). https://nube.siap.gob.mx/cierreagricola/.

Published

2023-09-01

How to Cite

López-Arias, C. A., ESCALANTE ESTRADA, J. A. S., RODRÍGUEZ-GONZÁLEZ, M. T., & AGUILAR CARPIO, C. (2023). Growth, biomass, yield, and components of canola (Brassica napus L.) in resonse to nitrogen source: Growth, biomass, yield, and components of canola. Biotecnia, 25(3), 65 – 70. https://doi.org/10.18633/biotecnia.v25i3.2003

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)