Sustainable biogas production via anaerobic co-digestion of cheese whey and cattle manure

Authors

  • Marco Arturo Velasco Morales Universidad Autónoma de Chiapas,Autonomous University of Chiapas image/svg+xml
  • José Apolonio Venegas Venegas Universidad Autónoma de Chiapas,Autonomous University of Chiapas
  • Mariela Beatriz Reyes Sosa Universidad Autónoma de Chiapas,Autonomous University of Chiapas
  • Raul Hernández- Altemirano
  • Rene Pinto Ruiz Universidad Autónoma de Chiapas,Autonomous University of Chiapas
  • Pascual López de Paz Universidad de Ciencias y Artes de Chiapas
  • Carlos Alonso Meza Avendaño Universidad de Ciencias y Artes de Chiapas
  • Fidel Alejandro Aguilar Aguilar Centro Mexicano para la Producción más Limpia del IPN https://orcid.org/0000-0003-3021-1186

DOI:

https://doi.org/10.18633/biotecnia.v26.2063

Keywords:

biochemical methane potential, substrates, Biogas, anaerobic digestion, methane yield

Abstract

In Mexico, specifically in Chiapas, the dairy cattle industry plays a significant role in cheese and milk production. However, the large quantities of cattle manure (CM) and cheese whey (CW) generated as byproducts pose environmental challenges if not managed properly. To address this issue, anaerobic digestion (AD) technology offers a sustainable solution by treating organic waste and producing biogas. This research study focuses on assessing the potential of CW and CM, both individually and in co-digestion, in an anaerobic environment. The study also evaluates biogas yield and composition using an up-flow anaerobic sludge blanket (UASB) reactor with different CW and CM mixtures. The findings indicate that the 30CM:70CW ratio exhibited the highest methane yield, surpassing other assays in co-digestion and mono-digestion. Furthermore, the UASB reactor showed that a mixture of 90CW:10CM produced 25.73 L of biogas per gram of volatile solids daily, comprising 60 % methane and 40 % carbon dioxide. This research demonstrates the potential for efficient and environmentally friendly treatment of CM and CW through optimized co-digestion and UASB technology, highlighting the opportunity to generate biogas while reducing waste.

Downloads

Download data is not yet available.

Author Biography

Fidel Alejandro Aguilar Aguilar, Centro Mexicano para la Producción más Limpia del IPN

Fidel Alejandro Aguilar Aguilar es ingeniero ambiental y maestro en energías renovables por la Universidad Politécnica de Chiapas (UPChiapas). Doctor en ingeniería por el Instituto de Energías Renovables (IER-UNAM) y Doctor en biocombustibles por la Universidad Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), en el programa de posgrado en biocombustibles en Brasil. Cuenta con publicaciones de artículos científicos arbitrados y capítulos de libro sobre producción de biogás, hidrógeno y biodiesel. Miembro del Sistema Nacional de Investigadores y pertenece al padrón veracruzano de investigadores ante el Consejo Veracruzano de Investigación Científica y desarrollo tecnológico. Actualmente, el Dr. Fidel trabaja en un proyecto postdoctoral en el Centro Mexicano para la Producción más Limpia del Instituto Politécnico Nacional.

References

Piñas JAV, Venturini OJ, Lora EES, et al. Aterros sanitários para geração de energia elétrica a partir da produção de biogás no Brasil: comparação dos modelos LandGEM (EPA) e Biogás (Cetesb). Rev Bras Estud Popul. 2016;33:175–188.

Molino A, Nanna F, Ding Y, et al. Biomethane production by anaerobic digestion of organic waste. Fuel. 2013;103:1003–1009.

Mainardis M, Cabbai V, Zannier G, et al. Characterization and BMP tests of liquid substrates for high-rate anaerobic digestion. Chem Biochem Eng Q. 2017;31:509–518.

Ohimain EI, Izah SC. A review of biogas production from palm oil mill effluents using different configura-tions of bioreactors. Renew Sustain Energy Rev. 2017;70:242–253.

Venegas Venegas JA, Espejel García A, Pérez Fernández A, et al. Potencial de energía eléctrica y factibilidad financiera para biodigestor-motogenerador en granjas porcinas de Puebla. Rev Mex Cienc Agríc. 2017;8:735–740.

Labatut RA, Angenent LT, Scott NR. Biochemical methane potential and biodegradability of complex or-ganic substrates. Bioresour Technol. 2011;102:2255–2264.

Da Silva C, Astals S, Peces M, et al. Biochemical methane potential (BMP) tests: Reducing test time by early parameter estimation. Waste Manag. 2018;71:19–24.

Náthia-Neves G, Berni M, Dragone G, et al. Anaerobic digestion process: technological aspects and recent developments. Int J Environ Sci Technol. 2018;15:2033–2046.

Mazorra-Manzano MÁ, Moreno-Hernández JM. Properties and options for the valorization of whey from the artisanal cheese industry. CienciaUAT. 2019;14:133–144.

Sebastián‐Nicolás JL, González‐Olivares LG, Vázquez‐Rodríguez GA, et al. Valorization of whey using a biorefinery. Biofuels Bioprod Biorefining. 2020;14:1010–1027.

Esnoval COV, Ruiz RP, Hernández RR, et al. Uso, producción y calidad nutricional del lactosuero en la región central de Chiapas. Av En Investig Agropecu. 2017;21:65–77.

OECD, Food, Nations AO of the U. OCDE‑FAO Perspectivas Agrícolas 2021‑2030 [Internet]. 2021. Available from: https://www.oecd-ilibrary.org/content/publication/47a9fa44-es.

Vera-Romero I, Estrada-Jaramillo M, González-Vera C, et al. Biogás como una fuente alternativa de energía primaria para el Estado de Jalisco, México. Ing Investig Tecnol. 2017;18:307–320.

Fagbohungbe MO, Onyeri CA, Semple KT. Co-fermentation of whey permeates and cattle slurry using a partitioned up-flow anaerobic digestion tank. Energy. 2019;185:567–572.

Neshat SA, Mohammadi M, Najafpour GD, et al. Anaerobic co-digestion of animal manures and lignocel-lulosic residues as a potent approach for sustainable biogas production. Renew Sustain Energy Rev. 2017;79:308–322.

Magdalena JA, Greses S, González-Fernández C. Anaerobic degradation of protein-rich biomass in an UASB reactor: organic loading rate effect on product output and microbial communities dynamics. J Environ Manage. 2020;274:111201.

García-Gen S, Rodríguez J, Lema JM. Control strategy for maximum anaerobic co-digestion performance. Water Res. 2015;80:209–216.

Hublin A, Schneider DR, Džodan J. Utilization of biogas produced by anaerobic digestion of agro-industrial waste: energy, economic and environmental effects. Waste Manag Res. 2014;32:626–633.

Chatterjee P, Ghangrekar M, Rao S. Sludge granulation in an UASB–moving bed biofilm hybrid reactor for efficient organic matter removal and nitrogen removal in biofilm reactor. Environ Technol. 2018;39:298–307.

Aguilar-Aguilar FA, Nelson DL, Pantoja L de A, et al. Study of anaerobic co-digestion of crude glycerol and swine manure for the production of biogas. Rev Virtual Quim. 2017;9:2383–2403.

Appels L, Baeyens J, Degrève J, et al. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci. 2008;34:755–781.

Guerrero-Toledo F de M, Espinosa-Solares T, Balagurusamy N, et al. Biochemical methane potential of chicken litter added with propionate in mesophilic conditions. Sci Agropecu. 2019;10:307–311.

Ergüder T, Tezel U, Güven E, et al. Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste Manag. 2001;21:643–650.

Álvarez J, Otero L, Lema J. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour Technol. 2010;101:1153–1158.

Appels L, Lauwers J, Degrève J, et al. Anaerobic digestion in global bio-energy production: potential and research challenges. Renew Sustain Energy Rev. 2011;15:4295–4301.

Published

2024-11-07

How to Cite

Velasco Morales, M. A., Venegas Venegas, J. A., Reyes Sosa, M. B., Hernández- Altemirano, R., Pinto Ruiz, R., López de Paz, P., … Aguilar Aguilar, F. A. (2024). Sustainable biogas production via anaerobic co-digestion of cheese whey and cattle manure . Biotecnia, 26, e2063. https://doi.org/10.18633/biotecnia.v26.2063

Issue

Section

Research Articles

Metrics