Bionomic modelling of hyperstable fish populations. The gulf corvina, Cynoscion othonopterus, fishery as case study

Authors

  • R Urías-Sotomayor Unidad Guaymas del Centro de Investigaciones Biológicas del Noroeste, S. C. Km 2.35 Camino al Tular, Estero de Bacochibampo, Guaymas, Sonora 85454, México. 2 Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N, Mazatlán, Sinaloa 82000, México.
  • E.A. Aragón-Noriega 1Unidad Guaymas del Centro de Investigaciones Biológicas del Noroeste, S. C. Km 2.35 Camino al Tular, Estero de Bacochibampo, Guaymas, Sonora 85454, México
  • J Payán-Alejo Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N, Mazatlán, Sinaloa 82000, México
  • M.A. Cisneros Mata Instituto Nacional de Pesca y Acuacultura. Calle 20 No. 605-Sur. Guaymas, Sonora 85400, México
  • G. Rodríguez-Domínguez Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N, Mazatlán, Sinaloa 82000, México

DOI:

https://doi.org/10.18633/biotecnia.v26.2065

Keywords:

hyperstability, Cobb-Douglas, stock reduction, gulf corvina

Abstract

Catch and fishing effort data are generally available, hence surplus production models are commonly used to conduct assessments. However, hyperstability resulting from spawning aggregations (SA) pose challenges to determine status and inform management of many fisheries resources. Using data from 1991 to 2019, we develop a method to study hyperstable fished stocks relaxing the assumption of constant catchability, hence direct dependence of catch-per-unit-effort and biomass. Information criterion was used to choose the best model including a Cobb-Douglas function for gulf corvina (Cynoscion othonopterus), a sciaenid fish endemic to the gulf of California managed through annual quotas. Bionomic stock-reduction models were fit using catch, effort, published natural mortality, virgin biomass, and economic structure. Models were solved using maximum likelihood and the best model chosen with Akaike information criterion. Current fishing effort is beyond bionomic optimum. This deserves a precautionary approach to protect this endemic species and sustain the fishery.

Downloads

Download data is not yet available.

References

Alam, M.S., Liu, Q., Nabi, M.R.U. and Al-Mamun, M.A. 2021. Fish stock assessment for data-poor fisheries, with a case study of tropical Hilsa shad (Tenualosa ilisha) in the water of Bangladesh. Sustainability. 13(7): 1-23.

https://doi.org/10.3390/su13073604. DOI: https://doi.org/10.3390/su13073604

Angelini, S., Armelloni, E.N., Costantini, I., De Felice, A., Isajlović, I., Leonori, I., Manfredi, C., Masnadi, F., Scarcella, G., Tičina, V. and Santojanni, A. 2021. Understanding the dinamics of ancillary pelagic species in the Adriatic Sea. Front. Mar. Sci. 8:728948.

https://doi.org/10.3389/fmars.2021.728948. DOI: https://doi.org/10.3389/fmars.2021.728948

Baranov, F.I. 1918. On the question of the biological basis of fisheries. Nauchn. Issled. Ikhtiologicheskii Inst. Izv. 1: 81-128.

Barrowman, N.J. and Myers, R.A. 2000. Still more spawner–recruitment curves: the hockey stick and its generalizations. Can. J. Fish. Aq. Sci. 57: 665-676.

https://doi.org/10.1139/f99-282. DOI: https://doi.org/10.1139/f99-282

Beverton, R.J.H. and Holt, S.J. 1957. On the Dynamics of Exploited Fish Populations. London: Great Britain Ministry of Agriculture, Fisheries and Food. 533 pp.

Burnham, K.P. and Anderson, D.R. 2002. Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.), New York: Springer. 488 pp.

Caddy, J.F. y Mahon, R. 1996. Puntos de referencia para la ordenación pesquera = Reference points for fisheries management. Rome: FAO 347 pp.

Cobb, C.W. and Douglas, P.H. 1928. A theory of production. Am. Econ. Rev. 18: 139-165.

https://www.jstor.org/stable/1811556.

Coppola, G. and Pascoe, S. 1998. A Surplus Production Model with a nonlinear catch-effort relationship. Mar. Res. Econ. 13: 37-50.

https://doi.org/10.1086/mre.13.1.42629217. DOI: https://doi.org/10.1086/mre.13.1.42629217

Cotero-Altamirano, C.E., Enciso-Enciso, C., Hernández-Escalante, L., Zobeyda-Brasil, L., Valles-Ríos, H. y Venegas, B. 2018. Reproducción de la curvina golfina Cynoscion othonopterus en el Golfo de California [Reproduction of the gulf corvina Cynoscion othonopterus in the Gulf of California]. Cienc. Pesq. 26(2): 37-46.

Enciso-Enciso, C. 2014. Evaluación de la pesquería de curvina golfina Cynoscion othonopterus (Jordan & Gilbert, 1882) en el alto golfo de California [Assessment of the gulf corvina fishery Cynoscion othonopterus (Jordan & Gilbert, 1882) in the upper Gulf of California]. [MSc Thesis]. [Sinaloa (Mexico)]: Universidad Autónoma de Sinaloa. 65 pp.

[EDF] Environmental Defense Fund de México. 2016. Resultados económicos de la temporada de curvina golfina, Golfo de Santa Clara 2016 [Economic results of the gulf corvina season, Gulf of Santa Clara 2016. 29 pp.].

https://mexico.edf.org/sites/mexico.edf.org/files/resulteconcurvina2016_4comunidades_0.pdf (Accesed 10 January 2022).

Erisman, B.E., Allen, L.G., Claisse, J.T., Pondella, D.J., Miller, E.F. and Murray, J.H. 2011. The illusion of plenty: hyperstability masks collapses in two recreational fisheries that target fish spawning aggregations. Can. J. Fish. Aquat. Sci. 68: 1705-1716.

https://doi.org/10.1139/F2011-090. DOI: https://doi.org/10.1139/f2011-090

Erisman, B.E., Appel, A.M., MaCall, A.D., Román, M.J. and Fujita, R. 2014. The influence of gear selectivity and spawning behavior on a data-poor assessment of a spawning aggregation fishery. Fish. Res. 159: 75-87.

https://doi.org/10.1016/j.fishres.2014.05.013. DOI: https://doi.org/10.1016/j.fishres.2014.05.013

Erisman, B.E., Grüss, A., Mascareñas-Osorio, I., Lıcón-González, H., Johnson, A.F. and López-Sagástegui, C. 2020. Balancing conservation and utilization in spawning aggregation fisheries: a trade-off analysis of an overexploited marine fish. ICES J. Mar. Sci. 77: 148-161.

https://doi:10.1093/icesjms/fsz195. DOI: https://doi.org/10.1093/icesjms/fsz195

Gherard, K.E., Erisman, B.E., Aburto-Oropeza, O., Rowell, K. and Allen, L.G. 2013. Growth, development, and reproduction in gulf corvina (Cynoscion othonopterus). Bull. South. Cal. Acad. Sci. 112(1): 1-18.

https://doi.org/10.3160/0038-3872-112.1.1. DOI: https://doi.org/10.3160/0038-3872-112.1.1

Haddon, M. 2011. Modelling and quantitative methods in fisheries, 2nd ed. Boca Raton, FLA: Chapman & Hall/CRC 406 pp. DOI: https://doi.org/10.1201/9781439894170

Haggarty, D.R. and King, J.R. 2006. CPUE as an index of relative abundance for nearshore reef fishes. Fish. Res. 81(1): 89-93.

https://doi.org/10.1016/j.fishres.2006.05.015. DOI: https://doi.org/10.1016/j.fishres.2006.05.015

Haigh, I.D., Elio, M. and Pattiaratchi, C. 2011. Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels. J. Geophys. Res. 116, C06025. DOI: https://doi.org/10.1029/2010JC006645

https://doi:10.1029/201 0JC006645.

Hannesson, R. 1983. Bioeconomic production function in fisheries: theoretical and ernpirical analysis. Can. J. Fish. Aquat. Sci. 40: 968-982.

https://doi.org/10.1139/f83-123. DOI: https://doi.org/10.1139/f83-123

Harley, S.J., Myers, R.A. and Dunn, A. 2001. Is catch-per-unit-effort proportional to abundance? Can. J. Fish. Aquat. Sci. 58: 1760-1772. DOI: https://doi.org/10.1139/f01-112

https://doi.org/10.1139/cjfas-58-9-1760. DOI: https://doi.org/10.1139/cjfas-58-9-1760

Hilborn, R., Amoroso, R.O, Anderson, C.M., Baum, J.K., Branch, T.A., Costello, C., de Moor, C.L., Faraj, A., Hively, D., Jensen, O.P., Kurota, H., Richard, L., Mace, P., McClanahan, T., Melnychuk, M.C., Minto, C., Osiol, G.Ch., Parma, A.M., Pons, M., Segurado, S., Szuwalski, C.S., Wilson, J.R. and Ye, Y. 2020. Effective fisheries management instrumental in improving fish stock status. Proc. Nat. Acad. Sci. 17: 2218-2224. DOI: https://doi.org/10.1073/pnas.1909726116

www.pnas.org/cgi/doi/10.1073/pnas.1909726116.

[Inapesca] Instituto Nacional de Pesca y Acuacultura. 2021. Acuerdo por el que se establece el volumen de captura permisible para el aprovechamiento de curvina golfina (Cynoscion othonopterus), en aguas de jurisdicción federal del Alto Golfo de California y delta del río Colorado para la temporada de pesca 2021 [Agreement establishing the volume of allowable catch for the use of Gulf curvina (Cynoscion othonopterus), in waters of federal jurisdiction of the Upper Gulf of California and Delta of the Colorado River for the 2021 fishing season]. Dictamen Técnico RJL/INAPESCA/DGAIPP/0006/2021. Mexico City: Secretaría de Agricultura y Desarrollo Rural.

https://cofemersimir.gob.mx/mirs/51050

Jensen, A.L. 1974. Leslie matrix models for fisheries studies. Biometrics 30(3): 547-551. https://doi:10.2307/2529208. DOI: https://doi.org/10.2307/2529208

Jensen, A.L. 1996. Beverton and Holt life history invariants result fromo ptimal trade-off of reproduction and survival. Can. J. Fish. Aquat. Sci. 53: 820-822.

https://doi.org/10.1139/f95-233. DOI: https://doi.org/10.1139/f95-233

Katsanevakis, S. 2006. Modelling fish growth: Model selection, multi-model inference and model selection uncertainty. Fish. Res. 81: 229-235.

https://doi.org/10.1016/j.fishres.2006.07.002. DOI: https://doi.org/10.1016/j.fishres.2006.07.002

Kenchington, T.J. 2014. Natural mortality estimators for information-limited fisheries. Fish and Fisheries. 15(4): 533-562.

https://doi.org/10.1111/faf.12027. DOI: https://doi.org/10.1111/faf.12027

Kimura, D, and Tagart, J. 1982. Stock reduction analysis, another solution to the catch equations. Can. J. Fish. Aquat. Sci. 39: 1467-1472.

https://doi.org/10.1139/f82-198. DOI: https://doi.org/10.1139/f82-198

Licón González, H.A., Sanjurjo-Rivera, E., Olivares-Bañuelos, N.C., Vázquez-Vera, W.L., Ortiz-Rodríguez, R.. 2023. Participative management experiences in the corvina fishery at the upper Gulf of California. Reg. y Soc. 35, e1678. https://doi.org/10.22198/rys2023/35/1678. DOI: https://doi.org/10.22198/rys2023/35/1678

Mackinson, S., Sumaila, U.R. and Pitcher, T.J. 1997. Bioeconomics and catchability: fish and fishers behavior during stock collapse. Fish. Res. 31: 11-17.

https://doi.org/10.1016/S0165-7836(97)00020-9. DOI: https://doi.org/10.1016/S0165-7836(97)00020-9

Martell, S.J.D.; Pine, W.E., Walters, C.J. 2008. Parameterizing age-structured models from a fisheries management perspective. Can. J. Fish. Aquat. Sci. 65(8): 1586-1600. https://doi:10.1139/f08-055. DOI: https://doi.org/10.1139/F08-055

Maunder, M.N., Sibert, J.R., Fonteneau, A., Hampton. J., Kleiber, P. and Harley, S.J. 2006. Interpreting catch per unit effort data to assess the status of individual stocks and communities. ICES J. Mar. Sci. 63: 1373-1385.

https://doi.org/10.1016/j.icesjms.2006.05.008. DOI: https://doi.org/10.1016/j.icesjms.2006.05.008

Meissa, B., Dia, M., Baye, B.C., Bouzouma, M., Beibou, E. and Roa-Ureta, R.H. 2021. A comparison of three data-poor stock assessment methods for the pink spiny lobster fishery in Mauritania. Front. Mar. Sci. 8.

https://doi.org/10.3389/fmars.2021.714250. DOI: https://doi.org/10.3389/fmars.2021.714250

Melnychuk, M.A., Peterson, E., Elliott, M. and Hilborn, R. 2017. Fisheries management impacts on target species status. Proc. Nat. Acad. Sci. 114: 178-183. DOI: https://doi.org/10.1073/pnas.1609915114

www.pnas.org/cgi/doi/10.1073/pnas.1609915114.

Mendívil-Mendoza, J.E., Aragón-Noriega, E.A., Arreola-Lizárraga, J.A., Rodríguez-Domínguez, G., Castillo-Vargasmachuca, S.G. y Ortega-Lizárraga, G.G. 2018. Indicadores de sustentabilidad para la pesquería de curvina golfina Cynoscion othonopterus en el Alto Golfo de California = Sustainability fishery indicator for Gulf corvina Cynoscion othonopterus in the Upper Gulf of California. Rev. Biol. Mar. Oceanogr. 53(1): 119-130.

http://dx.doi.org/10.4067/S0718-19572018000100119. DOI: https://doi.org/10.4067/S0718-19572018000100119

Methot, R.D., Wetzel, C.R. 2013. Stock synthesis: A biological and statistical framework for fish stock assessment and fishery management. Fish. Res. 142: 86-99. https://doi:10.1016/j.fishres.2012.10.012. DOI: https://doi.org/10.1016/j.fishres.2012.10.012

Pauly, D. 1980. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 39: 175-192.

https://doi.org/10.1093/icesjms/39.2.175. DOI: https://doi.org/10.1093/icesjms/39.2.175

Pascoe, S., Kahui, V., Hutton, T. and Dichmont, C. 2016. Experiences with the use of bioeconomic models in the management of Australian and New Zealand fisheries. Fish. Res. 183: 539–548. doi:10.1016/j.fishres.2016.01.008. DOI: https://doi.org/10.1016/j.fishres.2016.01.008

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191: 1-382.

Román-Rodríguez, M.J. 2000. Estudio poblacional del chano norteño, Micropogonias megalops y la curvina golfina Cynoscion othonopterus (Gilbert) (Pisces: Sciaenidae), especies endémicas del Alto Golfo de California, México [Population study of the northern chano, Micropogonias megalops and the gulf curvina Cynoscion othonopterus (Gilbert) (Pisces: Sciaenidae), endemic species of the Upper Gulf of California, Mexico]. [Sonora (México)] Instituto del Medio Ambiente y Desarrollo Sustentable del Estado de Sonora. Hoja de cálculo SNIB-CONABIO proyecto No. L298. CONABIO. Mexico. Also available on https://www.snib.mx/iptconabio/resource?r=SNIB-L298 (Accesed 10 January 2022).

Rose, G.A and Kulka, D.W. 1999. Hyperaggregation of fish and fisheries: how catch-per-unit-effort increased as the northern cod (Gadus morhua) declined. Can. J. Fish. Aquat. Res. 56(Suppl. 1): 118-127. DOI: https://doi.org/10.1139/f99-207

https://doi.org/10.1139/cjfas-56-S1-118 DOI: https://doi.org/10.1139/cjfas-56-S1-118

Ruelas-Peña, J. H., Valdez-Muñoz, C. y Aragón-Noriega, E.A. 2013. La pesquería de la corvina golfina y las acciones de manejo en el Alto Golfo de California, México = Analysis of the corvina gulf fishery as a function of management actions in the Upper Gulf of California, Mexico. Lat. Amer. J. Aquat. Res. 41(3): 498-505. DOI: https://doi.org/10.3856/vol41-issue3-fulltext-13

https://doi:103856/vol41-issue3-fulltext-13.

Schnute, J. 1987. A General Fishery Model for a Size-Structured Fish Population. Can. J. Fish. Aquat. Sci. 44(5): 924-940. https://doi:10.1139/f87-111. DOI: https://doi.org/10.1139/f87-111

Ulltang, Ø. 1996. Stock assessment and biological knowledge: can prediction uncertainty be reduced? ICES J. Mar. Sci. 53: 659-675.

https://doi.org/10.1006/jmsc.1996.0086. DOI: https://doi.org/10.1006/jmsc.1996.0086

Urías-Sotomayor, R., Rivera-Parra, G.I., Martínez-Cordero, F.J., Castañeda-Lomas, N., Pérez-González, R. and Rodríguez-Domínguez, G. 2018. Stock assessment of jumbo squid Dosidicus gigas in northwest Mexico. Lat. Am. J. Aquat. Res. 46(2): 330-336.

https://doi.org/10.3856/vol46-issue2-fulltext-8. DOI: https://doi.org/10.3856/vol46-issue2-fulltext-8

Walter, J.F. and Porch, C.E. 2012. Modeling terminal-year fishing mortality rates in western Atlantic bluefin tuna virtual population analyses. Aquat. Living Resour. 25: 333-340.

https://doi.org/10.1051/alr/2012037. DOI: https://doi.org/10.1051/alr/2012037

Graphical abstract

Downloads

Additional Files

Published

2024-03-26

How to Cite

Urías-Sotomayor, R., Aragón-Noriega, E. A., Payán-Alejo, J., Cisneros Mata, M. A., & Rodríguez-Domínguez, G. (2024). Bionomic modelling of hyperstable fish populations. The gulf corvina, Cynoscion othonopterus, fishery as case study. Biotecnia, 26, 181–188. https://doi.org/10.18633/biotecnia.v26.2065

Issue

Section

Research Articles

Metrics

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.