Standardization of an isothermal test as a novel diagnostic tool in México for the molecular detection of Chlamydia abortus in small ruminants

Authors

  • Carlos Eduardo Aragon López Depto de Ciencias Agronomicas y Veterinarias del Instituto Tecnologico de Sonora
  • Erika Gabriela Palomares Reséndiz Centro de Investigación Nacional Interdisciplinaria en Salud Animal e Inocuidad of the Instituto Na-cional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP)
  • Sergio Cuevas tellechea Depto de Ciencias Agronomicas y Veterinarias del Instituto Tecnologico de Sonora
  • Javier Rolando Reyna Granados
  • Beatriz Arellano Reynoso Facultad de Medicina Veterinaria y Zootecnia de la Universidad Nacional Autónoma de México (FMVZ-UNAM).
  • Miguel Angel Sánchez Castro Depto de Ciencias Agronomicas y Veterinarias del Instituto Tecnologico de Sonora
  • Jose Clemente Leyva Corona Depto de Ciencias Agronomicas y Veterinarias del Instituto Tecnologico de Sonora
  • Marcela Ivone Morales Pablos Instituto Tecnologico de Sonora

DOI:

https://doi.org/10.18633/biotecnia.v26.2109

Keywords:

Chlamydia abortus, ompA gene, LAMP, Ovine Enzootic Abortion

Abstract

Ovine Enzootic Abortion (OEA) is caused by Chlamydia abortus and has recently been recognized as endemic in Mexico. Due to the impact of OEA on intensive lamb production, it is necessary to establish a sanitary control plan based on an efficient diagnosis. The loop-mediated isothermal amplification technique (LAMP) is a molecular test that can specifically identify C. abortus. The aim of this study was to standardize the LAMP technique for the specific detection of C. abortus from ovine vaginal exudate. Primers were identified and modified from an electronic database. The effective conditions of the technique were determined using synthetic DNA and positive biological samples by PCR as references. The assay detection limit was 1 × 10-5 of genetic material, equivalent to 8.5 copies. The standardized LAMP test is proposed as a novel molecular tool for the rapid and specific diagnosis of C. abortus infection from ovine vaginal exudate samples in Mexico.

Downloads

Download data is not yet available.

References

Appelt, S., Aly, S. S., Tonooka, K., Glenn, K., Xue, Z., Lehenbauer, T. W., and Marco, M. L. 2019. Development and comparison of loop-mediated isothermal amplification and quantitative polymerase chain reaction assays for the detection of Mycoplasma bovis in milk. Journal of Dairy Science, 102(3), 1985–1996. https://doi.org/10.3168/jds.2018-15306

Aragón-López, C., Luna-Nevárez, P., Ortiz-Encinas, V., Leyva-Corona, J., Cantú-Soto, E., y Reyna-Granados, J. 2021. Detección molecular de Ehrlichia canis, Anaplasma platys y Rickettsia rickettsii en caninos domésticos del municipio de Cajeme, Sonora, México. Abanico Veterinario, 11. http://dx.doi.org/10.21929/abavet2021.45

Ashraf, A., Imran, M., Yaqub, T., Tayyab, M., Shehzad, W., Mingala, C. N., and Chang, Y. F. 2018. Development and validation of a loop-mediated isothermal amplification assay for the detection of My-coplasma bovis in mastitic milk. Folia Microbiologica, 63(3), 373–380. https://doi.org/10.1007/s12223-017-0576-x

Benavides-Ortíz, E. 2009. Principales enfermedades que afectan la producción ovina en el trópico. Spei Domus, 5(11), 32–36. Recovered from de https://revistas.ucc.edu.co/index.php/sp/article/view/594

Bush, R. M., and Everett, K. D. E. 2001. Molecular evolution of the Chlamydiaceae. International Journal of Systematic and Evolutionary Microbiology, 51(1), 203–220. https://doi.org/10.1099/00207713-51-1-203

Cardenas, Y. 2018. Determinación de la contaminación microbiológica del agua de riego aplicando nuevas estrategias de análisis (Doctoral dissertation, Tesis de doctorado, Universidad de Barcelona. España. http://hdl.handle.net/10803/586307

Conlan, J. W., Clarke, I. N., and Ward, M. E. 1988. Epitope mapping with solid-phase peptides: iden-tification of type-, subspecies-, species- and genus-reactive antibody binding domains on the major outer membrane protein of Chlamydia trachomatis. Molecular Microbiology, 2(5), 673–679. https://doi.org/10.1111/J.1365-2958.1988.TB00076.X

Corless, C. E., Guiver, M., Borrow, R., Edwards-Jones, V., Kaczmarski, E. B., and Fox, A. J. 2000. Contamination and sensitivity issues with a real-time universal 16s rRNA PCR. Journal of Clinical Microbiology, 38(5), 1747–1752. https://doi.org/10.1128/jcm.38.5.1747-1752.2000

Diario Oficial de la Federación 2016. Acuerdo mediante el cual se dan a conocer en los Estados Unidos Mexicanos las enfermedades y plagas exóticas y endémicas de notificación obligatoria de los animales terrestres y acuáticos. SEGOB. México. Recovered from: http://www.dof.gob.mx/nota_to_doc.php?codnota=5436016

Escalante-Ochoa, C., Rivera-Flores, A., Trigo-Tavera, F., and Romero-Martínez, J. 1996. Detection of Chlamydia psittaci in enteric subclinical infections in adult sheep, through cell culture isolation. Revista Latinoamericana de Microbiologia, 38(1), 17–23. https://pubmed.ncbi.nlm.nih.gov/8783901/

Everett, K. D. E., Bush, R. M., and Andersen, A. A. 1999. Emended description of the order Chla-mydiales, proposal of ParaChlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards. International Journal of Systematic Bacteriology, 49(2), 415–440. https://doi.org/10.1099/00207713-49-2-415

Fakruddin, M. D. 2011. Loop mediated isothermal amplification (LAMP)–an alternative to polymerase chain reaction (PCR). Bangladesh Research Publications Journal, 5(4). http://www.bdresearchpublications.com/admin/journal/upload/09235/09235.pdf

Halse, T. A., Musser, K. A., and Limberger, R. J. 2006. A multiplexed real-time PCR assay for rapid detection of Chlamydia trachomatis and identification of serovar L-2, the major cause of Lymphogran-uloma venereum in New York. Molecular and Cellular Probes, 20(5), 290–297. https://doi.org/10.1016/j.mcp.2006.02.003

Hardinge, P., and Murray, J. A. H. 2019. Reduced False Positives and Improved Reporting of Loop-Mediated Isothermal Amplification using Quenched Fluorescent Primers. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-43817-z

Hernández-Marin, J. A., Valencia-Posadas, M., Ruíz-Nieto, J. E., Mireles-Arriaga, A. I., Cortez-Romero, C., and Gallegos-Sánchez, J. 2017. Contribution of Sheep Breeding To the Livestock Sector in Mexico. Agroproductividad, 10(3), 87–93. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/975?source=/index.php/agroproductivid-ad/article/view/975#:~:text=https%3A//revista-agroproductividad.org/index.php/agroproductividad/article/view/975

Ihira, M., Yoshikawa, T., Enomoto, Y., Akimoto, S., Ohashi, M., Suga, S., Nishimura, N., Ozaki, T., Nishiyama, Y., Notomi, T., Ohta, Y., and Asano, Y. 2004. Rapid Diagnosis of Human Herpesvirus 6 Infection by a Novel DNA Amplification Method, Loop-Mediated Isothermal Amplification. Journal of Clinical Microbiology, 42(1), 140–145. https://doi.org/10.1128/JCM.42.1.140-145.2004

Laroucau, K., Souriau, A., and Rodolakis, A. 2001. Improved sensitivity of PCR for Chlamydophila using pmp genes. Veterinary Microbiology, 82(2), 155–164. https://doi.org/10.1016/S0378-1135(01)00381-9

Laroucau, K., Trichereau, A., Vorimore, F., and Mahé, A. M. 2007. A pmp genes-based PCR as a valuable tool for the diagnosis of avian chlamydiosis. Veterinary Microbiology, 121(1–2), 150–157. https://doi.org/10.1016/j.vetmic.2006.11.013

Li, J., Guo, W., Kaltenboeck, B., Sachse, K., Yang, Y., Lu, G., Zhang, J., Luan, L., You, J., Huang, K., Qiu, H., Wang, Y., Li, M., Yang, Z., and Wang, C. 2016. Chlamydia pecorum is the endemic intestinal species in cattle while C. gallinacea, C. psittaci and C. pneumoniae associate with sporadic systemic infection. Veterinary Microbiology, 193, 93–99. https://doi.org/10.1016/j.vetmic.2016.08.008

Lin, G.-Z., Zheng, F.-Y., Zhou, J.-Z., Wang, G.-H., Cao, X.-A., Gong, X.-W., and Qiu, C.-Q. 2011. Loop-Mediated Isothermal Amplification Assay Targeting the MOMP Gene for Rapid Detection of Chlamydia psittaci abortus Strain. Pakistan Veterinary Journal, 32(2), 273–276: https://www.researchgate.net/publication/267803405

NG-Nguyen, D., Stevenson, M. A., Dorny, P., Gabriël, S., Vo, T. V., Nguyen, V-A. T., Phan, T. V., Hii, S. F., and Traub, R. J. 2017. Comparison of a new multiplex real-time PCR withthe Kato Katzthick smear and copro-antigen ELISA for the detection and differentiation of Taenia spp. in human stools. PLoS Neglected Tropical Diseases. 11(7):e0005743. https://doi.org/10.1371/journal.pntd.0005743

Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63. https://watermark.silverchair.com/2800e63.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAmYwggJiBgkqhkiG9w0BBwagggJTMIICTwIBADCCAkgGCSqGSIb3DQEHA-TAeBglghkgBZQMEAS4wEQQMy3AQPdcwVpshAVuIAgEQgIICGSfU5ehJRqbIy2A_4pd12_oNbrQem7FM_kTE9ZYQL40XC4l

Palomares-Reséndiz, E. G., Mejía-Sánchez, P., Aguilar-Romero, F., De la Cruz-Colín, L., Jiménez-Severiano, H., Leyva-Corona, J. C., Morales-Pablos, M. I., y Díaz-Aparicio, E. 2020. Frecuencia y factores de riesgo asociados a la presencia de Chlamydia abortus, en rebaños ovinos en México. Revista Mexicana de Ciencias Pecuarias, 11(3), 783–794. https://doi.org/10.22319/rmcp.v11i3.5269

Read T. D., G. S. A. Myers, R. C. Brunham, W. C. Nelson, I. T. Paulsen, J. Heidelberg, E. Holtzapple, H. Khouri, N. B. Federova, H. A. Carty, L. A. Umayam, D. H. Haft, J. Peterson, M. J. Beanan, O. White, S. L. Salzberg, R. ‐c. Hsia, G. McClarty, R. G. Rank, and P. M. Bavoil, C. M. Fraser. 2003. Genome se-quence of Chlamydophila caviae (Chlamydia psittaci GPIC): Examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Research, 31(8), 2134–2147. https://doi.org/10.1093/nar/gkg321

Reisberg, K., Selim, A. M., and Gaede, W. 2013. Simultaneous detection of Chlamydia spp., Coxiella burnetii, and Neospora caninum in abortion material of ruminants by multiplex real-time polymerase chain reaction. Journal of Veterinary Diagnostic Investigation, 25(5), 614-619. https://doi.org/10.1177/1040638713497483

Salti-Montesanto V, Tsoli E, Papavassiliou P, Psarrou E, Markey BK, Jones GE, and Vretou E. 1997. Diagnosis of ovine enzootic abortion, using a competitive ELISA based on monoclonal antibodies against variable segments 1 and 2 of the major outer membrane protein of Chlamydia psittaci serotype 1. American Journal of Veterinary Research, 58(3):228-35. https://pubmed.ncbi.nlm.nih.gov/9055966/

Saharan, P., Dhingolia, S., Khatri, P., Singh Duhan, J., and Kumar Gahlawat, S. 2014. Loop-mediated isothermal amplification (LAMP) based detection of bacteria: A Review. African Journal of Biotech-nology, 13(19), 1920–1928. https://doi.org/10.5897/ajb2013.13459

Selim, A. 2016. Chlamydophila abortus infection in small ruminants: A review. Asian Journal of Animal and Veterinary Advances, 11(10), 587–593. https://doi.org/10.3923/ajava.2016.587.593

Yeh, H. Y., Shoemaker, C. A., and Klesius, P. H. 2005. Evaluation of a loop-mediated isothermal am-plification method for rapid detection of channel catfish Ictalurus punctatus important bacterial pathogen Edwardsiella ictaluri. Journal of Microbiological Methods, 63(1), 36–44. https://doi.org/10.1016/j.mimet.2005.02.015

Published

2023-12-12

How to Cite

Aragon López, C. E. ., Palomares Reséndiz, E. G., Cuevas tellechea, S., Reyna Granados, J. R. ., Arellano Reynoso, B. ., Sánchez Castro, M. A. ., … Morales Pablos, M. I. (2023). Standardization of an isothermal test as a novel diagnostic tool in México for the molecular detection of Chlamydia abortus in small ruminants. Biotecnia, 26, e2109. https://doi.org/10.18633/biotecnia.v26.2109

Issue

Section

Research Articles

Metrics