BIORREMEDIACIÓN: ACTUALIDAD DE CONCEPTOS Y APLICACIONES

Authors

  • Keni Cota-Ruiz El Colegio de Chihuahua. Calle Partido Díaz 4723 esquina con Anillo Envolvente del PRONAF. Ciudad Juárez, Chihuahua, México,32310
  • José A. Nuñez-Gastelúm Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Químico Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua, 32310 México
  • Marcos Delgado-Rios El Colegio de Chihuahua. Calle Partido Díaz 4723 esquina con Anillo Envolvente del PRONAF. Ciudad Juárez, Chihuahua, México,32310 Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Químico Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua, 32310 México
  • Alejandro Martinez-Martinez El Colegio de Chihuahua. Calle Partido Díaz 4723 esquina con Anillo Envolvente del PRONAF. Ciudad Juárez, Chihuahua, México,32310 Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Químico Biológicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chihuahua, 32310 México

DOI:

https://doi.org/10.18633/biotecnia.v21i1.811

Keywords:

Biotecnología ambiental, contaminación, compuestos tóxicos, sistemas biológicos

Abstract

Vivimos una época que experimenta un crecimiento acelerado de la población y una fuerte industrialización. La humanidad, en el afán de satisfacer sus múltiples necesidades, se ha supeditado tanto a tecnologías que dañan el medio ambiente como a la dependencia de compuestos xenobióticos. En consecuencia, serios problemas de contaminación que amenazan tanto la salud de los seres vivos como del ambiente se han suscitado. Como respuesta, la biotecnología ambiental a través de la biorremediación como una de sus aplicaciones, desempeña un rol clave en la remoción de contaminantes. Diferentes sistemas biológicos de remediación, que incluyen el uso de plantas, algas, bacterias y hongos, se han empleado con éxito para tratar ambientes contaminados de metales pesados, hidrocarburos, compuestos xenobióticos, y elementos radioactivos. Aunque la biorremediación no es una tecnología nueva, esta ha ido evolucionando y se ha posicionado como un factor sustancial, tanto en términos de eficiencia como en aspectos económicos, para abatir la contaminación. Esta revisión analiza diferentes problemáticas de contaminación ambiental, describe las principales estrategias de biorremediación y detalla mecanismos moleculares empleados por algunos microorganismos para degradar compuestos tóxicos y recalcitrantes.

Downloads

Download data is not yet available.

References

Adams, G.O., Fufeyin, P.T., Okoro, S.E. y Ehinomen, I. 2015. Bioremediation, Biostimulation and Bioaugmention: A Review. International Journal of Environmental Bioremediation & Biodegradation. 3 (1): 28–39.

Agarry, S., y Latinwo, G.K. 2015. Biodegradation of Diesel Oil in Soil and Its Enhancement by Application of Bioventing and Amendment with Brewery Waste Effluents as Biostimulation- Bioaugmentation Agents. Journal of Ecological Engineering. 16 (2): 82–91.

Ali, H., Khan, E. y Sajad, M.A. 2013. Phytoremediation of Heavy Metals-Concepts and Applications. Chemosphere. 91 (7): 869–881.

Aschberger, K., Micheletti, C., Sokull-Klüttgen, B. y Christensen. F.M. 2011. Analysis of Currently Available Data for Characterising the Risk of Engineered Nanomaterials to the Environment and Human Health - Lessons Learned from Four Case Studies. Environment International. 37 (6): 1143–1156.

Bamforth, S.M. y Singleton. I. 2005. Bioremediation of Polycyclic Aromatic Hydrocarbons: Current Knowledge and Future Directions. Journal of Chemical Technology and Biotechnology. 80 (7): 723–736.

Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C.M., Yacamán, M.J., Peralta-Videa, J.R.y Gardea-Torresdey. J.L. 2015. Comparative Phytotoxicity of ZnO NPs, Bulk ZnO, and Ionic Zinc onto the Alfalfa Plants Symbiotically Associated with Sinorhizobium Meliloti in Soil. Science of the Total Environment. 515: 60–69.

Borja, J., Taleon, D.M., Auresenia, J. y Gallardo, S. 2005. Polychlorinated Biphenyls and Their Biodegradation. Process Biochemistry. 40 (6):1999–2013.

Braunschweig, J., Bosch, J. y Meckenstock, R.U. 2013. Iron Oxide Nanoparticles in Geomicrobiology: From Biogeochemistry to Bioremediation. New Biotechnology. 30 (6): 793–802.

Das, S. y Dash. H.R. 2014. Microbial Bioremediation: A Potential Tool for Restoration of Contaminated Areas. En: Microbial Biodegradation and Bioremediation. S. Das (ed.), pp: 1-22. Elsevier, USA.

Dercova, K. y Tandlich, R. 2003. Aerobic Biodegradation of Polychlorinated Biphenyls (PCBS). En: The Utilization of Bioremediation of Reduce Soil Contamination: Problems and Solutions, J.A. Glaser, P. Baveye y V. Sasek (ed.), pp 95–113. Kluwer Academic Publisher. Springer, Prage, Czech Republic.

Dixit, R., Wasiullah, D., Malaviya, K., Pandiyan, U.B., Singh, A., Sahu, R., Shukla, et al., 2015. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability. 7 (2): 2189–2212.

Dua, M., Singh, A., Sethunathan, N. y Johri. A. 2002. Biotechnology and Bioremediation: Successes and Limitations. Applied Microbiology and Biotechnology 59 (2-3): 143-52.

Dzionek, A., Wojcieszyńska, D. y Guzik, U. 2016. Natural Carriers in Bioremediation: A Review. Electronic Journal of Biotechnology. 23: 28-36.

Eweis, J.B, Ergas, S.J. Chang, D.P. y Schroeder, E.D. 1998. Bioremediation Principles. MacGrow-Hill. Inc, Toronto. Ferrarese, E., Andreottola, G. y Oprea, I.A. 2008. Remediation of PAH-Contaminated Sediments by Chemical Oxidation. Journal of Hazardous Materials. 152 (1): 128-139.

Fuentes, S., Méndez, S., Aguila, P. y Seeger, M. 2014. Bioremediation of Petroleum Hydrocarbons: Catabolic Genes, Microbial Communities, and Applications. Applied Microbiology and Biotechnology. 98 (11): 4781–94.

Gadd, G.M. 2010. Metals, Minerals and Microbes: Geomicrobiology and Bioremediation. Microbiology. 156 (3): 609–43.

Gardea-Torresdey, J.L., Peralta-Videa, J.R., Montes, M., De La Rosa, G.y Corral-Diaz, B. 2004. Bioaccumulation of Cadmium, Chromium and Copper by Convolvulus Arvensis L.: Impact on Plant Growth and Uptake of Nutritional Elements. Bioresource Technology. 92 (3): 229–35.

Grieger, K.D, Hjorth, R., Rice, J., Kumar, N. y Bang, J. 2015. Nano- Remediation : Tiny Particles Cleaning up Big Environmental

Problems. IUCN, 1–7.

Ingle, A.P., Seabra, A.B., Duran, N. y Rai, M. 2014. Nanoremediation: A New and Emerging Technology for the Removal of Toxic Contaminant from Environment. Microbial Biodegradation and Bioremediation. Elsevier Inc., 234-50.

John, A.C., Küpper, M., Manders-Groot, A.M.M., Debray, B., Lacome, J.M. y Kuhlbusch, T.A.J. 2017. Emissions and Possible Environmental Implication of Engineered Nanomaterials (ENMs) in the Atmosphere. Atmosphere. 8 (5): 1-29.

Juhasz, A.L. y Naidu, R. 2000. Bioremediation of High Molecular Weight Polycyclic Aromatic Hydrocarbons: A Review of the Microbial Degradation of Benzo [a] Pyrene. International Biodeterioration & Biodegradation. 45: 57-88.

Labana, S., Kapur, M., Malik, D.K., Prakash, D. y Jain, R.K. 2007. Diversity, Biodegradation and Bioremediation of Polycyclic Aromatic Hydrocarbons. En: Environmental bioremediation technologies. S.N. Singh y R.D. Tripathi (ed.), pp. 409-443. Springer Berlin Heidelberg.

Lécrivain, N., Vincent A., Nathalie C., V. y Clément, B. 2018. Multi-Contamination (Heavy Metals, Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons) of Littoral Sediments and the Associated Ecological Risk Assessment in a Large Lake in France (Lake Bourget). Science of The Total Environment. 619: 854-865.

Mauter, M.S. y Elimelech, M. 2008. Critical Review Environmental Applications of Carbon-Based Nanomaterials. Environmental Science and Technology. 42: 5843-5859.

Mishra, A. y Malik, A. 2014. Novel Fungal Consortium for Bioremediation of Metals and Dyes from Mixed Waste Stream. Bioresource Technology. 171 (1): 217-226.

Mishra, M. 2015. Microbial Diversity: Its Exploration and Need of Conservation. En: Applied Environmental Biotechnology: Present Scenario and Future Trends. K. Garima (ed.), pp 43–58. Springer New Delhi, India.

Mohn, W.W. 2004. Biodegradation and Bioremediation of Halogenated Organic Compounds. Biodegradation and Bioremediation. 2: 125-48.

Neves, P.A, Colabuono, F.I., Ferreira, P.A.L., Kawakami, S.K., Taniguchi, S., Figueira, R.C.L., Mahiques, M.M., Montone, R.C. y Bícego, M.C. 2018. Depositional History of Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs) and Polycyclic Aromatic Hydrocarbons (PAHs) in an Amazon Estuary during the Last Century. Science of The Total Environment. 615: 1262-1270.

Newsome, L., Katherine M. y Lloyd, J.R. 2014. The Biogeochemistry and Bioremediation of Uranium and Other Priority Radionuclides. Chemical Geology. 363: 164-84.

Padmavathiamma, P.K. y Li, LY. 2007. Phytoremediation Technology: Hyper-Accumulation Metals. Water, Air, and Soil Pollution. 184 (1-4): 105-126.

Pandey, G. y Rakesh K.J. 2002. Bacterial Chemotaxis toward Environmental Pollutants: Role in Bioremediation. Society. 68 (12): 5789-5795.

Passatore, L., Simona, R., Juwarkar, A.A. y Massacci, A. 2014. Phytoremediation and Bioremediation of Polychlorinated Biphenyls (PCBs): State of Knowledge and Research Perspectives. Journal of Hazardous Materials. 278: 189-202.

Peralta-Videa, J.R., Zhao, L., Lopez-Moreno, M.L., De la Rosa, G., Hong, J. y Gardea-Torresdey, J.L.. 2011. Nanomaterials and the Environment: A Review for the Biennium 2008-2010. Journal of Hazardous Materials 186 (1): 1-15.

Priester, J.H., Moritz, S.C. Espinosa, K., Ge, Y., Wang, Y., Nisbet, R.M., Schimel, J.P., Goggi, S., Gardea-Torresdey, J.L. y Holden, P.A. 2017. Damage Assessment for Soybean Cultivated in Soil with Either CeO2or ZnO Manufactured Nanomaterials. Science of the Total Environment. 579: 1756-1768.

Rathna, R. y Nakkeeran, E. 2018. Phenol Degradation from Industrial Wastewater by Engineered Microbes. En: Bioremediation: Applications for Environmental Protection and Management. Energy, Environment, and Sustainability. S.Varjani, A. Agarwal, E. Gnansounou y B. Gurunathan (ed.), pp 253-276. Springer, Singapore.

Reddy, P.V.L., Hernandez-Viezcas, J.A., Peralta-Videa, J.R. y Gardea-Torresdey, J.L. 2016. Lessons Learned: Are Engineered Nanomaterials Toxic to Terrestrial Plants? Science of the Total Environment. 568: 470-479.

Rico, C.M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J.R. y Gardea-Torresdeay, J.L. 2011. Interaction of Nanoparticles with Edible Plants and Their Possible Implications in the Food Chain. Journal of Agricultural and Food Chemistry. 59 (8): 3485-3498.

Robles-González, I.V., Fava, F. y Poggi-Varaldo, H.M. 2008. A review on slurry bioreactors for bioremediation of soil and sediments. Microbial Cell Factories. 7 (1): 5.

Romero-Franco, M., Godwin, H.A., Bilal, M. y Cohen, Y. 2017. Needs and Challenges for Assessing the Environmental Impacts of Engineered Nanomaterials (ENMs). Beilstein Journal of Nanotechnology. 8: 989-1014.

Singh, R.L. 2017. Introduction to Environmental Biotechnology. En: Principles and Applications of Environmental Biotechnology for a Sustainable Future. R.L. Singh (ed.), pp 1-12. Springer, Singapore.

Singh, A., y Ward, O. 2004. Biodegradation and Bioremediation. En: Biodegradation and Bioremediation. A. Singh y O. Ward (ed.), pp 1-5. Springer-Verlag Berlin Heidelberg, Alemania.

Singh, R., Paul, D. y Jain, R.K. 2006. Biofilms: Implications in Bioremediation. Trends in Microbiology. 14 (9): 389-397.

Smith, M.R. 1990. The Biodegradation of Aromatic Hydrocarbons by Bacteria. Biodegradation. 1 (2-3): 191-206.

Speight, J.G. y Arjoon, K.K. 2012. Biodegradation of Petroleum.

En: Bioremedation of Petroleum and Petroleum Products. J.G. Speight y K.K. Arjoon (ed.), pp 304-359. John Wiley & Sons, Inc. Hoboken, NJ, USA.

Srivastava, S. 2015. Bioremediation Technology: A Greener and Sustainable Approach for Restoration of Environmental Pollution. En: Applied Environmental Biotechnology: Present Scenario and Future Trends. G. Kaushik (ed.), pp: 1-18. Springer New Delhi, India.

Sun, L., Cao, X., Li, M., Zhang, X., Li, X. y Cui, Z. 2017. Enhanced Bioremediation of Lead-Contaminated Soil by Solanum Nigrum L. with Mucor Circinelloides. Environmental Science and Pollution Research. 24 (10): 9681-9689.

Tausz, J. y Donatli, P. 1930. “Über Die Oxydation Des Wasserstoffe Und Der Kohlenwasser- Stoffe Mittels Bakterien . Daß Es Bakterien Gibt Die Wasserstoff Oxydieren Können Und Auch Solche Bakterien , Die Kohlenwasserstoffe Zu Oxydieren Imstande Sind , Ist Bei Der Beständigkeit Des Wasse” 350 (1906).

Uglietti, C., Gabrielli, P., Cooke, C.A., Vallelonga, P. y Thompson, L.G. 2015. Widespread Pollution of the South American Atmosphere Predates the Industrial Revolution by 240 Y. Proceedings of the National Academy of Sciences. 112 (8): 2349-2354.

Varjani, S.J, Agarwal, A.K., Gnansounou, E. y Gurunathan, B. 2018. Bioremediation: Applications for Environmental Protection and Management. Springer, Singapore. Villegas, L.B., Martínez, M.A., Rodríguez, A.y Amoroso, M.J. 2014.

Microbial Consortia, a Viable Alternative for Cleanup of Contaminated Soils. En: Bioremediation in Latin America: Current Research and Perspectives. A. Alvarez y M. Polti (ed.), pp 135-148. Springer, Switzerland.

Vivaldi, M. 2011. Bioremediation - An Overview. Journal of Industrial Pollution Control. 27 (2): 161-68.

Waters, C.N., Zalasiewicz, J., Summerhayes, C., Barnosky, A.D., Poirier, C., Gauszka, A., Cearreta, A. et al. 2016. The Anthropocene Is Functionally and Stratigraphically Distinct from the Holocene. Science. 351 (6269): aad2622-aad2622.

Wołejko, E., Wydro, U., y Łoboda, T. 2016. The Ways to Increase Efficiency of Soil Bioremediation. Ecological Chemistry and Engineering. 23 (1): 155-74.

Yellu, M., Kamireddy, C. y Olowokure, O.O. 2018. Pancreatic Cancer Epidemiology and Environmental Risk Factors.En: Current and Emerging Therapies in Pancreatic Cancer, 1-22.

Zalasiewicz, J.A.N., Williams, M., Steffen, W. y Crutzen, P. 2010. The New World of the Anthropocene. Environmental Science and Technology 44 (7): 2228–2231.

Zawierucha, I. y Malina, Gf. 2011. Bioaugmentation, Biostimulation and Biocontrol. En: Bioaugmentation Biostimulation and Biocontrol , Soil Biology. A. Singh, N. Parmar, R.C. Kuhad y O.P. Ward (ed.), pp 1-23. Springer-Verlag Berlin Heidelberg, Alemania.

Zuverza-Mena, N., Martínez-Fernández, D., Du, W., Hernandez- Viezcas, J.A. Bonilla-Bird, N., López-Moreno, M.L., Komárek, M., Peralta-Videa, J.R. y Gardea-Torresdey, J.L. 2017. Exposure of Engineered Nanomaterials to Plants: Insights into the Physiological and Biochemical Responses-A Review. Plant Physiology and Biochemistry 110: 236–64.

Published

2018-12-23

How to Cite

Cota-Ruiz, K., Nuñez-Gastelúm, J. A., Delgado-Rios, M., & Martinez-Martinez, A. (2018). BIORREMEDIACIÓN: ACTUALIDAD DE CONCEPTOS Y APLICACIONES. Biotecnia, 21(1), 37–44. https://doi.org/10.18633/biotecnia.v21i1.811

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)