Phaseolus acutifolius ASSOCIATED WITH Bacillus amyloliquefaciens AND Azospirillum halopraeferens UNDER SALINITY CONDITIONS

Authors

  • R. Prabhaharan Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
  • J. Borboa-Flores Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
  • E. C. Rosas-Burgos Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
  • J. L. Cárdenas-López Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
  • J. Ortega-García Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Caborca, Sonora, México
  • E. O. Rueda- Puente Departamento de Agricultura y Ganadería, Universidad de Sonora, Hermosillo, Sonora, México

DOI:

https://doi.org/10.18633/biotecnia.v21i1.875

Keywords:

N2-fxing bacteria, interaction plant growth promoting halobacteria, salinity tolerance, tepary bean

Abstract

Salinity-tolerant plants offer hope for the future of agriculture by providing solutions to the problems caused by years. Sonora is the most arid Mexican state. The agroindustrial halophytes are an option in dry-arid zones agriculture. In the present study, we evaluated the growth and development under different salinity and field conditions, of two beans (Phaseolus acutifolius) genotypes: Indio Yumi, and Navojoa. Seeds were inoculated with plant growth promoting halobacteria, a previously selected and cultivated strain of Azospirillum halopraeferens and a native Bacillus amyloliquefaciens. Significant differences were observed among them for weight and biomass, as well as biochemical features between the analyzed plant parts. Our findings suggest that a potential yield enhancement and protein production under field conditions can be promoted by the application of the beneficial bacterium B. amyloliquefaciens and A. halopraeferens. Also, demonstrated the ability of the studied beneficial halobacteria to promote growth and yield of the halotolerant Phaseolus acutifolius, a potentially useful finding for the agricultural growers in dry and semiarid zones.

Downloads

Download data is not yet available.

References

Ahmad, M., Zahir, Z.A., Khalid, M., Nazli, F., Arshad, M. 2013. Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Phy and Bioch, 63:170-176.

Bagwell, Ch., Dantzler, M., Bergholz, P. Lovell, Ch. 2001. Hostspecific ecotype diversity of rhizoplane diazotrophs of the perennial glasswort Salicornia virginica and selected salt mash grasses. J Aqua Microb Eco, 23: 293-300.

Barnes, H., Blachstocks. J. 1973. Estimation of lipids in marine animal and tissues: detailed investigation of sulphophosphovanil method for total lipids. J Exp Mar Biol Ecol, 12: 103-118.

Blackmar, A., Mallarino, A. 1996. Physiological Production stage prepared by research agronomists. In: Proyecto Agricultura de Precisión Manfredi. Bredha, J., Kreme, R., (eds.). Dept. of Agronomy. Iowa State University, Ames.

Carrillo, A., Puente. M., Castellanos, T., Bashan, Y. 1998. Aplicaciones Biotecnológicas de Ecología Microbiana. In: Manual de Laboratorio. Bashan Y. (eds.) Pontificia Universidad Javeriana, Santa Fe de Bogotá, Colombia and Centro de Investigaciones Biológicas del Noroeste S.C. (CIBNOR), La Paz, Baja California Sur, México.

Coombs, J., Hall, S., Long, D., Scurlock, J. 1988. Tecnicas en fotosíntesis y bioproductividad. Asociación de Postgraduados, Chapingo, Edo. de Mexico.

Comisión Nacional del Agua (CONAGUA). 2017. Boletin mensual del Observatorio de La Paz. Gerencia estatal de La Paz, Baja California Sur, Mexico.

Freeman, G.F. 1912. Southwestern beans and teparies. University of Arizona Agricultural Experiment Station Bulletin.

Hamaoni, B., Abbadi, J. M., Bardam, S., Rashid, A., Sani, S., Oken, Y. 2001. Effects of inoculation with Azospirilllum brasilense on chick pea (Cicer arietinu) and faba bean (Vicia faba) under different growth conditions. Agron, 21: 553-560.

Hamdi, H. 1999. Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in Arid Climate. Microbiol Mol Biol Rev, 63: 968-989.

Jefferies, R. 1981. Osmotic adjustment and the response of halophytic plants to salinity. Bioscience 31: 42-48.

Manovsky, E.C. 1982. Identificación de microorganismos Fitopatógenos. Universidad Autónoma de Chapingo (UACH). Mexico, D.F.

Marius, S., Neculai, M., Vasile S., Marius, M., Lucian, H. 2013. Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Scientia Horticulturae, 151 (28):22-29.

Maguire, J. D. 1962. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Sci 2:176-177.

Mota, U. 1999. Sistemas de riego aplicados a la producción de alimentos con agua de mar. In: I simposium internacional sobre financiamiento para modernización de áreas de riego. Mota C. (eds.). Hermosillo, Sonora, Mexico.

Nabhan, G.P. 1985. Gathering the Desert. University of Arizona Press, Tucson, USA.

Pérez, J. 1995. Health tests in Seeds. Course International Workshop on Methods of Health Tests in seeds. Departamento de Parasitolgía. Universidad Autónoma Agraria Antonio Narro (UAAAN). BuenaVista, Saltillo, Coah. Mex.

Pishchik, U.N., Cheryae, A.I., kozhemayko, A., Vorubyo, N.I., Lazare, A.M., Kozlo, l.P. 1996. Effect of inoculation with nitrogen fixing Klebsiella on potato yield. Nitrogen fixation nonlegumes: Proceeding of the 7th Nitrogen Fixation of Non-legumes.

Riehl, T., Ungar, I. 1982. Growth and ion accumulation in Salicornia europaea under saline field conditions. Oecologia, 53: 193.

Remus, R., Ruppel, S., Jacub, H., Hecht-Buchholz, Merbach, W. 2000. Colonization behaivour of two enterobacterial strains on cereals. Biol and fert of soils, 30: 55-557.

Sato, N., Murata, N. 1988. Membrane lipids. Methods of Enzimology, 167: 251-259.

SAS, Institute. 1996. SAS® User’s Guide. Statistical Version 6.12 edition. Cary, NC, 433 p.

SAGAR. Secretaría de Agricultura y Recursos Hidráulicos (SARH). 1994. Manual of Sampling and Processing for the identification of the Principal Pathogens of the Potato. Dirección General de Sanidad Vegetal (DGSV_SARH). México, D.F.

Shisanya, C.A. 2002. Improvement of drought adapted tepary bean (Phaseolus acutifolius A. Gray var. latifolius) yield through biological nitrogen fixation in semi-arid SE-Kenya. European Journal of Agronomy, 16:13-24.

Snedecor, G.W. 1956. Statistical methods applied to experiments in agriculture and biology. The Iowa State College Press, Ames, IA.

Sokal, R.R., Rohlf. F. 1988. Biometry. In: The principles and practice of statistics in biological research. Sokal R. (eds.) Freeman & Co, San Francisco.

Stumpf, D., Prisco, J., Weeks, J., Lindley, J., O’Leary, J. 1986. Salinity and Salicornia bigelovii Torr. seedlings establishment. Water relations. J Exp Bot, 37: 160-167.

Thorne, G. 1961. Techniques of nematology. Mc Graw-Hill, New York.

Will, M., Sylvia, D. 1990. Interaction of rhizosphere bacteria, fertilizar, and vesicular-arbuscular mycorrhizal fungi with sea oats. Appl Environ Microbiol, 56: 2071-2079.

Downloads

Published

2019-01-01

How to Cite

Prabhaharan, R., Borboa-Flores, J., Rosas-Burgos, E. C., Cárdenas-López, J. L., Ortega-García, J., & Rueda- Puente, E. O. (2019). Phaseolus acutifolius ASSOCIATED WITH Bacillus amyloliquefaciens AND Azospirillum halopraeferens UNDER SALINITY CONDITIONS. Biotecnia, 21(1), 127–132. https://doi.org/10.18633/biotecnia.v21i1.875

Issue

Section

Research Articles

Metrics