Bioaccesibilidad de compuestos antioxidantes de diferentes variedades de frijol (Phaseolus vulgaris L.) en México, mediante un sistema gastrointestinal in vitro//Bioaccessibility of antioxidant compounds from different bean varieties (Phaseolus vulgaris L.) in Mexico, through an in vitro gastrointestinal system

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v22i1.1159

Palabras clave:

Compuestos fenólicos, antioxidantes, bioaccesibilidad, digestibilidad

Resumen

El frijol tiene alto contenido fenólico y actividad antioxidante, por ello es importante conocer cuánto se libera de estos compuestos de la matriz alimentaria y es aprovechado en el organismo. Por lo tanto, el objetivo de este trabajo fue determinar la bioaccesibilidad de compuestos antioxidantes de diferentes variedades de frijol (Phaseolus vulgaris L.) mediante un sistema gastrointestinal in vitro. Se realizó la cuantificación de compuestos fenólicos, flavonoides y capacidad antioxidante (DPPH, ABTS y FRAP) de 6 cultivares: Negro, Flor de Mayo, Patol, Pinto Saltillo, Teapa y Peruano, antes y después del cocimiento. Adicionalmente, se evaluó la digestión gastrointetinal in vitro en frijol cocido. Los resultados obtenidos de las variedades de frijol Teapa y Peruano, presentaron mayor rendimiento de extracto crudo, y un incremento del contenido fenólico. El frijol cocido, mostró un incremento en el contenido de flavonoides en las variedades Teapa, Peruano y Pinto Saltillo, así como mayor capacidad antioxidante, en las variedades Negro, Flor de mayo, Teapa y Peruano. La concentración inhibitoria media (IC50) la alcanzaron Teapa, Pinto Saltillo y Flor de Mayo (106.45, 154.72 y 127.16 μg/mL respectivamente). La digestión gastrointestinal in vitro dio como resultado mayor bioaccesibilidad para compuestos fenólicos, resaltando las variedades Teapa, Pinto Saltillo y Flor de mayo.

ABSTRACT

Beans have high phenolic content and antioxidant activity, so it is important to know how much of these compounds is released from the food matrix and is used in the body. Therefore, the objective of this work was to determine the antioxidant compounds bioavailability on different bean varieties (Phaseolus vulgaris L.) through an in vitro gastrointestinal system. Quantification of phenolic compounds, flavonoids and antioxidant capacity (DPPH, ABTS and FRAP) of 6 cultivars (Black, Flor de Mayo, Patol, Pinto Saltillo, Teapa and Peruvian) was carried out, before and after cooking. Additionally, in vitro gastrointetinal digestion in cooked beans was evaluated. The results obtained from the Teapa and Peruvian bean varieties showed a higher yield of crude extract and an increase in phenolic content. Cooked beans showed an increase in flavonoid content in the Teapa, Peruvian and Pinto Saltillo varieties, as well as greater antioxidant capacity, in the Negro, Flor de Mayo, Teapa and Peruvian varieties. The mean inhibitory concentration (IC50) was reached by Teapa, Pinto Saltillo and Flor de Mayo (106.45, 154.72 and 127.16 μg/mL respectively). The gastrointestinal digestion in vitro resulted in greater bioavailability for phenolic compounds, highlighting the Teapa, Pinto Saltillo and Flor de Mayo varieties.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aleum, H. 2017. Review paper on breeding common bean (Phaseolus vulgaris L.) genotypes for acidic soil tolerance. International Journal of Advanced research and publications. 1 3) 39-46.

Boateng, J.V.M. 2008. Effect of processing on antioxidant contents in selected dry beans (Phaseolus spp. L.). Food Science and Technology. 41: 1541-1547.

Cardona, F., Andrés-Lacueva, C., Tulipania, S., Tinahonesb, F.J., Queipo-Ortuñoa, M.I. 2013. Benefits of polyphenols on gut microbiota and implications in human health. Sciverse ScienceDirect. 24: 1415-1422.

Celmeli, T, Sari, H, Canci, H, Sari, D, Adak, A, Eker, T, Toker, C. 2018. The nutritional content of common bean (Phaseolus vulgaris L.) Landraces in comparison to modern varieties. Agronomy. 8(166): 1-9.

Chia-Jung, Ch., Kadouh, H., Kequan, Z. 2013. Phenolic compounds and antioxidant properties of gooseberry as affected by in vitro digestion. Food Science and Technology. 51: 417-422.

Díaz, A.M., Caldas, G.V., y Blair, M.W. 2010. Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Research International. 43(2): 595-601.

Eldeen, I.M.S., Seow, E.M., Abdullah, R., Sulaiman, S.F. 2011. In vitro antibacterial, antioxidant, total phenolic contents and anti-HIV-1 reverse transcriptase activities of extracts of seven Phyllanthus sp. South African Journal of Botany. 77: 75-79.

Gálvez, J., Coelho, G., Crespo, M.E., Cruz, T., Rodríguez-Cabezas, M.E., Concha, A. 2001. Intestinal anti-inflammatory activity of morin on chronic experimental colitis in the rat. Alimentary Pharmacology & Therapeutics. 15: 2027-2039.

Gálvez, R.L, Genovese, M.A., Lajolo, F.M. 2009. Effect of Different Cooking Conditions on Phenolic Compounds and Antioxidant Capacity of Some Selected Brazilian Bean (Phaseolus vulgaris L.) Cultivars. J. Agric. Food Chem. 57: 5734–5742.

García, E.C. 2014. Inhibidores de Proteasas en Leguminosas. Tesis de Licenciatura. Universidad de Valladolid. 29 p.

Gutiérrez-Grijalva, E.P., Ambriz-Pérez, D.L., Leyva-López, N., Castillo-López, R.I. y Heredia, J.B. 2016. Biodisponibilidad de compuestos fenólicos dietéticos: Revisión. Revista Española de Nutrición Humana y Dietética. 20(2): 140-147.

Huber, K. 2016. Phenolic Acid, Flavonoids and Antioxidant Activity of Common Brown Beans (Phaseolus vulgaris L.) Before and After Cooking. Journal of Nutrition & Food Sciences. 6(5): 1-7.

Kähkönen, M. P., Hopia, A. I., y Heinonen, M. 2001. Berry phenolics and their antioxidant activity. Journal of Agricultural and Food Chemistry. 49: 4076e4082.

Kahlon, T. S., y Smith, G. E. 2007. In vitro binding of bile acids by blueberries (Vaccinium spp.), plums (Prunus spp.), prunes (Prunus spp.), strawberries (Fragaria X ananassa), cherries (Malpighia punicifolia), cranberries (Vaccinium macrocarpon) and apples (Malus sylvestris). Food Chemistry. 100: 1182e1187.

Karas,_M., Jakubczyk, A., Szymanowska, U., Złotek, U., y Zieli_nska, E. 2016. Digestion and bioavailability of bioactive phytochemicals. International Journal of Food Science and Technology. 1-5.

La Farga, T., Villaro, S., Bobo, G., Simo, J., Agullo-Aguallo, I. 2019. Bioaccessibility and antioxidant activity of phenolic compounds in cooked pulses. Food Science Technology. 1-8.

Laparra, J.M., Glahn, R. P., Miller, D.D. 2008. Bioaccessibility of phenols in common beans (Phaseolus vulgaris L.) and iron (Fe) availability to Caco-2 Cells. J. Agric. Food Chem. 56, 10999-11005.

Luo, Y., Xie, W., Hao, Z., Jin, X., Wang, Q. 2014. The impact of processing on in vitro bioactive compounds bioavailability and antioxidant activities in faba bean (Vicia faba L.) and azuki bean (Vigna angularis L.). International Food Research Journal. 21(3): 995-1001.

Maarit, J.R., Renouf, M., Cruz‐Hernandez, C., Actis‐Goretta, M., Sagar K., y Da Silva M. 2013. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br. J. Clin Pharmacol. 75(3): 588-602.

Madhujith, T., Shahidi, F. 2005. Antioxidant potential of pea beans (Phaseolus vulgaris L). Journal of Food Science. 70(1): S85-S90.

Manach, C., Scalbert, A., Morand, C., Rémésy, C., Jimenez, L. 2004. Polyphenols: food sources and bioavailability Am. J. Clin Nutr. 79: 727-747.

Mojica, L., Chen, K., González de Mejía, E. 2014. Impact of Commercial Precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin-pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV. 80(1): 188-198.

Molyneux, P. 2004. The use of the stable radical dipheylpicrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science Technology, 26(2): 211-219.

Pérez-Perez L.M., García-Borbón, L.G., González-Vega, R.I., Rodríguez-Figueroa, J.C., Rosas-Burgos, E.C., Huerta- Ocampo, J.A., Ruiz-Cruz, S., Wong-Corral, F.J., Borboa- Flores, J., Rueda-Puente, E.O., Del-Toro-Sánchez, C.L. 2018. Liberación de compuestos fenólicos ligados en el garbanzo (Cicer arietinum L.) utilizando microbiota humana intestinal. Biotecnia. 20(3):146-154.

Prior, R.L., Wu, X., Schaich, K. 2005. Standardized Methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry. 53: 4290- 4302.

Rocha-Guzmán, N.E., González-Laredo, R.F., Ibarra-Pérez, F.J., Nava-Berumen, C.A., Gallegos-Infante, J.A. 2007. Effect of pressure cooking on the antioxidant activity of extracts from three common bean (Phaseolus vulgaris L.) cultivars. Food Chemistry. 100: 31-35.

Roginsky, V., Lissi, E.A. 2005. Review of methods to determine chain-breaking antioxidant activity in food. Food Chemistry. 92(2): 235–254.

Rubio, C.P., Hernández-Ruiz, J., Martínez-Sbuela, S., Tvarijonaviciute, A., Ceron, J.J. 2016. Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: an update. BMC Veterinary Research. 12(1): 166.

Saura-Calixto, F., Serrano, J., Goni, I. 2006. Intake and bioaccessibility of total polyphenols in a whole diet. Science Direct 101 492-501.

Scalbert, A., y Williamson, G. 2000. Dietary Intake and Bioavailability of Poliphenols. Journal Nutrition. 130 (5): 346-356.

Scalbert, A. C., y Morand, C. 2005. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition. 25(2): 297-306.

Soriano, S.R.A., Pavan, V. Pastore C.M. 2015. Effect of in vitro digestion on bioactive compounds and antioxidant activity of common bean seed coats. Food Research International. 76: 74-78.

Surangi, H., Thilakarathna, H.P., y Rupasinghe, V. 2013. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients. 5: 3367-3387.

Tarko, T., DudaChodak, A., Sroka, P., Satora, P., Michalik, J. 2009. Tranformations of Phenolic Compounds in an in vitro Model Simulating the Human Alimentary Tract. Food Technology and Biotechnology. 47(4): 456-463.

Van-Campen, D.R., Glahn R.P. 1999. Micronutrient bioavailability techniques: accuracy, problems and limitations. Field Crops Research. 60: 93-113.

Venu, P., Holm, D.G., Jayanty, S.S. 2012. Effects of cooking methods on polyphenols, pigments and antioxidant activity in potato tubers. Food Science and Technology. 45: 161-171.

Xu, B.J., Chang, S.K.C. 2009. Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J Agric Food Chem. 57: 4754-4764.

Yokozawa, T., Chen, C.P., Dong, E., Tanaka, T., Nonaka, G.I., Nishioka I. 1998. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochemical Pharmacology. 56(2): 213–222.

Yuwei, L, Weihua, X, Zhenping, H., Xiaoxiao, J., Qian, W. 2014. The impact of processing on in vitro bioactive compounds bioavailability and antioxidant activities in faba bean (Vicia faba L) and azuki bean (Vigna angularis L.). International Food Research Journal. 23(3): 995-1001.

Descargas

Publicado

2019-11-18

Cómo citar

Pérez-Perez, L. M., Del Toro Sánchez, C. L., Sánchez Chavez, E., González Vega, R. I., Reyes Díaz, A., Borboa Flores, J., … Flores-Cordova, M. A. (2019). Bioaccesibilidad de compuestos antioxidantes de diferentes variedades de frijol (Phaseolus vulgaris L.) en México, mediante un sistema gastrointestinal in vitro//Bioaccessibility of antioxidant compounds from different bean varieties (Phaseolus vulgaris L.) in Mexico, through an in vitro gastrointestinal system. Biotecnia, 22(1), 117–125. https://doi.org/10.18633/biotecnia.v22i1.1159

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.