Efecto de la adición de subproductos agroindustriales en las propiedades físicas de un biopolímero almidón-gelatina

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v23i1.1324

Palabras clave:

Subproducto; Biopolímero; Características físicas.

Resumen

En este trabajo se reporta el efecto de la adición de subproductos de mango, jamaica y café a una formulación de almidón-gelatina para elaborar una bioplástico en forma de cuchara. Se encontró que la adición de los subproductos mejoró las propiedades mecánicas del bioplástico debido a la compatibilidad de sus componentes observados a nivel microscópico (la dureza aumento de 190 hasta 290 N). Asimismo, las propiedades físicas de los bioplásticos como el ángulo matiz (63-89), y los índices de solubilidad y absorción en agua se modificaron por la adición de subproductos. Se observó que las condiciones de máxima estabilidad de los bioplásticos obtenidas a partir del modelado de las isotermas de adsorción a 35 °C con la ecuación de GAB y el cálculo el volumen de microporo correspondieron a una actividad de agua cercana a 0.40, independientemente del subproducto agregado.  Las distintas formulaciones exhibieron un evento endotérmico a una temperatura de 180ºC, asociado a un proceso de fusión, así como una elevada tasa de degradación en suelo después de 120 h. Los subproductos probaron ser un refuerzo en la formulación de bioplásticos. El uso de subproductos de mango, café y jamaica representan una alternativa interesante para incrementar su potencial tecnológico.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abarca, D., Martínez, R., Muñoz, J., Torres, M., y Vargas, G., 2010. Residuos de Café, Cacao y Cladodio de Tuna: Fuentes Promisorias de Fibra Dietaria. Revista Tecnológica-ESPOL, 23(2):63-69.

Al-Muhtaseb, A., Mcminn, W., y Magee, T. 2004. Water sorption isotherm of starch powders Part 1: Mathematical description of experimental data. Journal of Food Engineering. 61(3):297-307.

Aranda, F. J., González, R., Jasso, C. F., y Mendizábal, E. 2015. Water absorption and thermomechanical characterization of extruded starch/poly (lactic acid)/agave bagasse fiber bioplastic composites. International Journal of Polymer Science, 2015: 1-7.

Ashori, A., y Nourbakhsh, A. 2010. Bio-based composites from waste agricultural residues. Waste Management, 30(4): 680- 684.

ASTM. 2005. Standard test method for plastics. In: Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, PA.

Avérous, L. y Boquillon, N. 2004. Biocomposites based on plasticized starch: thermal and mechanical behaviors. Carbohydrate Polymer. 56:111-122.

Azuara-Nieto, E., y Beristain-Guevara, C. I. (2007). Estudio termodinámico y cinético de la adsorción de agua en proteína de suero de leche. Revista Mexicana de Ingeniería Química, 6(3), 359-365.

Beninca, C., Demiate, I. M., Lacerda, L. G., Carvalho Filho, M. A. D. S., Ionashiro, M., y Schnitzler, E. 2008. Thermal behavior of corn starch granules modified by acid treatment at 30 and 50 C. Eclética Química, 33(3), 13-18.

Bertuzzi, M. A., Armada, M., y Gottifredi, J. C. 2007. Physicochemical characterization of starch-based films. Journal of Food Engineering, 82(1): 17-25.

Brizga, J., Hubacek, K., y Feng, K. (2020). The Unintended Side Effects of Bioplastics: Carbon, Land, and Water Footprints. One Earth, 3(1), 45-53.

Brunauer, S., Deming, L. S., Deming, W. E., y Teller, E. 1940. On a theory of the van der Waals adsorption of gases. Journal of the American Chemical society, 62(7), 1723-1732.

Curvelo, A., De Carvalho, A., Agnelli, J. 2001. Thermoplastic starch–cellulosic fibers composites: Preliminary results. Carbohydrate Polymers. 45:183-188.

De Carvalho, G. R., Marques, G. S., de Matos Jorge, L. M., y Jorge, R. M. M. (2018). Cassava bagasse as a reinforcement agent in the polymeric blend of biodegradable films. Journal of Applied Polymer Science, 47224.

Franco, C., Cyras, V., Busalmen, J., Ruseckaite, R. y Vázquez, A. 2004. Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polymer Degradation and Stability, 86:95-103.

García-Gurrola, A., Rincón, S., Escobar-Puentes, A. A., Zepeda, A., y Martínez-Bustos, F. 2019. Microencapsulation of red sorghum phenolic compounds with esterified sorghum starch as encapsulant materials by spray drying. Food Technology and Biotechnology, 57(3), 341.

Gáspar, M., Benkó, Z., Dogossy, G., Réczey, K., y Czigány, T. 2005. Reducing water absorption in compostable starch-based plastics. Polymer Degradation and Stability. 90:563-569.

Gounavé, F., Marais, S., Bessadok, A., Lan Gevin, D., Morvan, C., y Métayer, M. 2006. Study of water sorption in modified flax fibers. Journal of Applied Polymer Science. 101:4281-4289.

Hoover, R. 2001. Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydrate Polymer. 45:253-267.

Imam, S. H., Cinelli, P., Gordon, S. H., y Chiellini, E. 2005. Characterization of biodegradable composite films prepared from blends of poly (vinyl alcohol), cornstarch, and lignocellulosic fiber. Journal of Polymers and the Environment. 13(1):47-55.

Imam, S., Gordon, S., Shogren, R., Tosteson, T., Govind, N. y Greene, R. 2000. Degradation of starch-poly(b-hydroxybutyrate-co-b-hydroxvalerate) bioplastic in tropical coastal waters. Applied and Environmental Microbiology. 65:431-437.

Jumaidin, R., Khiruddin, M. A. A., Saidi, Z. A. S., Salit, M. S., y Ilyas, R. A. (2020). Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. International Journal of Biological Macromolecules, 146, 746-755.

Kaisangsri, N., Kerdchoechuen, O., y Laohakunjit, N. (2014). Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydrate Polymers, 110, 70-77.

Krishnamurthy, A., y Amritkumar, P. (2019). Synthesis and characterization of eco-friendly bioplastic from low-cost plant resources. SN Applied Sciences, 1(11), 1432.

Kuakpetoon, D., y Wang. Y. 2008. Locations of hypochlorite oxidation in corn starches varying in amylose content. Carbohydrate Research. 343:90-100.

López‐Velázquez, J. C., Rodríguez‐Rodríguez, R., Espinosa‐ Andrews, H., Qui‐Zapata, J. A., García‐Morales, S., Navarro‐ López, D. E., y Luna-Barcénas, G., Vassallo‐Brigneti, E. T. y García‐Carvajal, Z. Y. (2019). Gelatin–chitosan–PVA hydrogels and their application in agriculture. Journal of Chemical Technology & Biotechnology, 94(11), 3495-3504.

Lubis, M., Gana, A., Maysarah, S., Ginting, M. H. S., y Harahap, M. B. 2018. Production of bioplastic from jackfruit seed starch (Artocarpus heterophyllus) reinforced with microcrystalline cellulose from cocoa pod husk (Theobroma cacao L.) using glycerol as plasticizer. IOP Conference Series: Materials Science and Engineering. 309:012100.

Lucas, N., Bienaime, C. and Belloy, C. 2008. Polymer biodegradation: Mechanisms and estimation techniques - A review, Chemosphere. 73(4):429-442.

McNutt, J. (2019). Spent coffee grounds: A review on current utilization. Journal of industrial and engineering chemistry, 71, 78-88.

Maldonado, Y., Jiménez, J., Arámbula, G., Flores, V., Álvarez, P., Ramírez, M., y Salazar, R. 2019. Effect of water activity on extractable polyphenols and some physical properties of Hibiscus sabdariffa L. calyces. Journal of Food Measurement and Characterization. 13(1):687-696.

Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., y Zaritzky, N. E. (2002). Microstructural characterization of yam starch films. Carbohydrate Polymers, 50(4), 379-386.

Mayo-Mayo, G., Navarrete-García, A., Maldonado-Astudillo, Y. I., Jiménez-Hernández, J., Santiago-Ramos, D., Arámbula- Villa, G., Álvarez-Fitz, P., Ramírez, M. y Salazar, R. (2020). Addition of roselle and mango peel powder in tortilla chips: a strategy for increasing their functionality. Journal of Food Measurement and Characterization, 14, 1511-1519.

Navia, D., Ayala, A. y Villada, H. 2011. Adsorption isotherms of cassava flour bioplastics compression molded. Biotecnología en el Sector Agropecuario y Agroindustrial. 9(1):77-87.

Moro, T. M., Ascheri, J. L., Ortiz, J. A., Carvalho, C. W., y Meléndez- Arévalo, A. (2017). Bioplastics of native starches reinforced with passion fruit peel. Food and Bioprocess Technology, 10(10), 1798-1808.

Peng, G., Chen, X., Wu, W., y Jiang, X. 2007. Modeling of water sorption isotherm for corn starch. Journal of Food Engineering, 80(2):562-567.

Quirijns, E. J., van Boxtel, A. J., van Loon, W. K., y van Straten, G. 2005. Sorption isotherms, GAB parameters and isosteric heat of sorption. Journal of the Science of Food and Agriculture. 85(11):1805-1814.

Rodríguez, W., Flores, J., Martınez, F., Chinas, F., Espinoza, F. 2014. Nanomechanical properties and thermal stability of recycled cellulose reinforced starch–gelatin polymer composite. The Journal of Applied Polymer Science. 132(4).

Santillán-Moreno, A., Martínez-Bustos, F., Castaño-Tostado, E., y Amaya-Llano, S. L. (2011). Physicochemical characterization of extruded blends of corn starch–whey protein concentrate–Agave tequilana fiber. Food and Bioprocess Technology, 4(5), 797-808.

Syamani, F. A., Pramasari, D. J., Kusumaningrum, W. B., Kusumah, S. S., Masruchin, N., Ermawati, R., y Cahyaningtyas, A. A. (2020). Characteristics of Bioplastic Made from Cassava Starch Filled with Fibers from Oil Palm Trunk at Various Amount. E&ES, 439(1), 012035.

Torres, F. G., Mayorga, J. P., Vilca, C., Arroyo, J., Castro, P., y Rodriguez, L. (2019). Preparation and characterization of a novel starch–chestnut husk biocomposite. SN Applied Sciences, 1(10), 1158.

Väisänen, T., Haapala, A., Lappalainen, R., y Tomppo, L. 2016. Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review. Waste Management. 54:62-73.

Velásquez, S., Pelaéz, G., Giraldo, D. 2016. Use of vegetable fibers in polymer matrix composites: a review with a view to their application in designing new products. Informador Técnico (Colombia). 80(1):77-86.

Williamson, K., y Hatzakis, E. (2019). NMR analysis of roasted coffee lipids and development of a spent ground coffee application for the production of bioplastic precursors. Food Research International, 119, 683-692.

Worgull, M. 2009. Molding Materials for Hot Embossing. En: Hot Embossing: Theory and Technology of Microreplication. William Andrew (ed.), pp 57-112, Oxford, UK.

Xu, Y. y Hanna, M. 2005. Preparation and properties of biodegradable foams from starch acetate and poly(tetramethylene adipate-co-terephthalate). Carbohydrate Polymer. 59:521-529.

Yang, J., Ching, Y. C., y Chuah, C. H. (2019). Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers, 11(5), 751.

Wang, Y., y Zhang, L. (2009). In L. Yu (Ed.), Biodegradable polymer blends and composites from renewable resources (pp. 129- 161). New Jersey: Wiley. Part I, Chapter 6.

Wang, W., Wang, H., Jin, X., Wang, H., Lin, T., y Zhu, Z. (2018). Effects of hydrogen bonding on starch granule dissolution, spinnability of starch solution, and properties of electrospun starch fibers. Polymer, 153, 643-652.

Descargas

Publicado

2021-01-21

Cómo citar

Salazar López, R., Francisco Ponce, B. A. ., Vidal Silva, I. M. ., Maldonado Astudillo, Y. I. ., Jiménez Hernández, J. ., Flores Casamayor, V. ., & Arámbula Villa, G. . (2021). Efecto de la adición de subproductos agroindustriales en las propiedades físicas de un biopolímero almidón-gelatina . Biotecnia, 23(1), 52–61. https://doi.org/10.18633/biotecnia.v23i1.1324

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.