Perfil enterotoxigénico, producción de biopelícula y resistencia antimicrobiana de Bacillus cereus aislado de arroz comercializado al sur de México
DOI:
https://doi.org/10.18633/biotecnia.v26.2429Palabras clave:
Bacillus cereus, arroz, virulenciaResumen
Bacillus cereus es responsable de intoxicaciones alimentarias a nivel mundial, siendo importante la caracterización de cepas aisladas de alimentos, en este caso, de arroz.
Por lo tanto, el objetivo de este estudio fue identificar el perfil toxigénico, las enzimas líticas, la resistencia antimicrobiana y la producción de biopelículas en cepas de B. cereus aisladas de arroz. El perfil genético de toxinas y los genes relacionados con biopelículas fue determinado por PCR en punto final. La biopelícula fue visualizada mediante tinción con safranina, y la evaluación de enzimas líticas fue realizada en medios de cultivo.
Los psicrófilos fueron monitoreados por el crecimiento de las cepas a temperatura de refrigeración. La técnica de GTG5 se utilizó para determinar la diversidad genética de las cepas, y la resistencia a antimicrobianos fue validada mediante la concentración mínima inhibitoria.
Las cepas de B. cereus s.l. aisladas de arroz contenían los genes de enterotoxinas y genes asociados con la producción de biopelículas. Sin embargo, las cepas no contenían el gen de la cereulida.
La cepa aislada de arroz frito fue la única que contenía el gen de la toxina hbl y el operón eps2. Esta misma cepa no produjo biopelícula, presentó sensibilidad intermedia a eritromicina, fue positiva para amilasa, mostró alta actividad lecitinolítica y creció a temperaturas de refrigeración.
Descargas
Citas
Adame-Gomez, R., Castro Alarcón, N., Vences-Velázquez, A., Rodríguez-Bataz, E., Santia-go-Dionisio, M.C., Ramírez-Peralta, A., 2019. Prevalencia de cepas del grupo de Bacillus cereus productoras de biopelicula en helados comercializados en México. https://doi.org/10.5281/ZENODO.3520530
Adame-Gómez, R., Cruz-Facundo, I.-M., García-Díaz, L.-L., Ramírez-Sandoval, Y., Pérez-Valdespino, A., Ortuño-Pineda, C., Santiago-Dionisio, M.-C., Ramírez-Peralta, A., 2020a. Biofilm Produc-tion by Enterotoxigenic Strains of Bacillus cereus in Different Materials and under Different Environmental Conditions. Microorganisms 8, 1071. https://doi.org/10.3390/microorganisms8071071
Adame-Gómez, R., Muñoz-Barrios, S., Castro-Alarcón, N., Leyva-Vázquez, M.-A., Toribio-Jiménez, J., Ramírez-Peralta, A., 2020b. Prevalence of the Strains of Bacillus cereus Group in Artisanal Mexican Cheese. Foodborne Pathog. Dis. 17, 8–14. https://doi.org/10.1089/fpd.2019.2673
Ankolekar, C., Rahmati, T., Labbé, R.G., 2009. Detection of toxigenic Bacillus cereus and Bacillus thu-ringiensis spores in U.S. rice. Int. J. Food Microbiol. 128, 460–466. https://doi.org/10.1016/j.ijfoodmicro.2008.10.006
Arslan, S., Eyi, A., Küçüksarı, R., 2014. Toxigenic genes, spoilage potential, and antimicrobial re-sistance of Bacillus cereus group strains from ice cream. Anaerobe 25, 42–46. https://doi.org/10.1016/j.anaerobe.2013.11.006
Berthold-Pluta, Pluta, Garbowska, Stefańska, 2019. Prevalence and toxicity characterization of Bacillus cereus in food products from Poland. Foods 8, 269. https://doi.org/10.3390/foods8070269
Candela, T., Fagerlund, A., Buisson, C., Gilois, N., Kolstø, A.-B., Økstad, O.A., Aymerich, S., Niel-sen-Leroux, C., Lereclus, D., Gohar, M., 2019. CalY is a major virulence factor and a biofilm matrix protein. Mol. Microbiol. 111, 1416–1429. https://doi.org/10.1111/mmi.14184
Cano- Ponce, M., Ramirez- Peralta, A., 2023. Aislamiento de B. Cereus en arroz comercializado en el sur de México. Tlamati Press.
Caro-Astorga, J., Álvarez-Mena, A., Hierrezuelo, J., Guadix, J.A., Heredia-Ponce, Z., Arbole-da-Estudillo, Y., González-Munoz, E., de Vicente, A., Romero, D., 2020. Two genomic regions encoding exopolysaccharide production systems have complementary functions in B. cereus multicellularity and host interaction. Sci. Rep. 10, 1000. https://doi.org/10.1038/s41598-020-57970-3
Caro-Astorga, J., Pérez-García, A., de Vicente, A., Romero, D., 2014. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms. Front. Microbiol. 5, 745. https://doi.org/10.3389/fmicb.2014.00745
Castulo-Arcos, D.A., Adame-Gómez, R., Castro-Alarcón, N., Galán-Luciano, A., Santiago Dionisio, M.C., Leyva-Vázquez, M.A., Perez-Olais, J.-H., Toribio-Jiménez, J., Ramirez-Peralta, A., 2022. Genetic diversity of enterotoxigenic Bacillus cereus strains in coriander in southwestern Mexico. PeerJ 10, e13667. https://doi.org/10.7717/peerj.13667
Chen, J., Zhang, J., Zhan, L., Chen, H., Zhang, Z., Huang, C., Yue, M., 2022. Prevalence and antimicro-bial-resistant characterization of Bacillus cereus isolated from ready-to-eat rice products in Eastern China. Front. Microbiol. 13, 964823. https://doi.org/10.3389/fmicb.2022.964823
Chen, L., Daniel, R.M., Coolbear, T., 2003. Detection and impact of protease and lipase activities in milk and milk powders. Int. Dairy J. 13, 255–275. https://doi.org/10.1016/S0958-6946(02)00171-1
Claus, D., Berkeley, C., 1986. The genus Bacillus, in: Bergey’s Manual of Systematic Bacteriology. The Williams & Wilkins Co, Baltimore, pp. 1105–39.
Cruz-Facundo, I., Adame-Gómez, R., Vences-Velázquez, A., Rodríguez-Bataz, E., Muñoz-Barrios, S., Pérez-Oláis, J., Ramírez-Peralta, A., 2022. Bacillus Cereus in Eggshell: Enterotoxigenic Profiles and Biofilm Production. Braz. J. Poult. Sci. 24, eRBCA-2021-1535. https://doi.org/10.1590/1806-9061-2021-1535
Cruz-Facundo, I.-M., Toribio-Jiménez, J., Castro-Alarcón, N., Leyva-Vázquez, M.-A., Rodríguez-Ruíz, H.-A., Pérez-Olais, J.-H., Adame-Gómez, R., Rodríguez-Bataz, E., Reyes-Roldán, J., Mu-ñoz-Barrios, S., Ramírez-Peralta, A., 2023. Bacillus cereus in the Artisanal Cheese Production Chain in Southwestern Mexico. Microorganisms 11, 1290. https://doi.org/10.3390/microorganisms11051290
De Jonghe, V., Coorevits, A., Vandroemme, J., Heyrman, J., Herman, L., De Vos, P., Heyndrickx, M., 2008. Intraspecific genotypic diversity of Bacillus species from raw milk. Int. Dairy J. 18, 496–505. https://doi.org/10.1016/j.idairyj.2007.11.007
De-la-Pinta, I., Cobos, M., Ibarretxe, J., Montoya, E., Eraso, E., Guraya, T., Quindós, G., 2019. Effect of biomaterials hydrophobicity and roughness on biofilm development. J. Mater. Sci. Mater. Med. 30, 77. https://doi.org/10.1007/s10856-019-6281-3
Dietrich, R., Jessberger, N., Ehling-Schulz, M., Märtlbauer, E., Granum, P.E., 2021. The Food Poisoning Toxins of Bacillus cereus. Toxins 13, 98. https://doi.org/10.3390/toxins13020098
Dogsa, I., Brloznik, M., Stopar, D., Mandic-Mulec, I., 2013. Exopolymer diversity and the role of levan in Bacillus subtilis biofilms. PloS One 8, e62044. https://doi.org/10.1371/journal.pone.0062044
Duport, C., Jobin, M., Schmitt, P., 2016. Adaptation in Bacillus cereus: From Stress to Disease. Front. Microbiol. 7. https://doi.org/10.3389/fmicb.2016.01550
Ehling-Schulz, M., Fricker, M., Scherer, S., 2004. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48, 479–487. https://doi.org/10.1002/mnfr.200400055
Ehling-Schulz, M., Guinebretiere, M.-H., Monthán, A., Berge, O., Fricker, M., Svensson, B., 2006. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol. Lett. 260, 232–240. https://doi.org/10.1111/j.1574-6968.2006.00320.x
Ehling-Schulz, M., Lereclus, D., Koehler, T.M., 2019. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol. Spectr. 7, 7.3.6. https://doi.org/10.1128/microbiolspec.GPP3-0032-2018
Enosi Tuipulotu, D., Mathur, A., Ngo, C., Man, S.M., 2021. Bacillus cereus: Epidemiology, Virulence Factors, and Host-Pathogen Interactions. Trends Microbiol. 29, 458–471. https://doi.org/10.1016/j.tim.2020.09.003
Flores-Urbán, K.A., Natividad-Bonifacio, I., Vázquez-Quiñones, C.R., Vázquez-Salinas, C., Quiño-nes-Ramírez, E.I., 2014. Detection of toxigenic Bacillus cereus strains isolated from vegetables in Mexico City. J. Food Prot. 77, 2144–2147. https://doi.org/10.4315/0362-028X.JFP-13-479
Fraccalvieri, R., Bianco, A., Difato, L.M., Capozzi, L., Del Sambro, L., Simone, D., Catanzariti, R., Ca-ruso, M., Galante, D., Normanno, G., Palazzo, L., Tempesta, M., Parisi, A., 2022. Toxigenic Genes, Pathogenic Potential and Antimicrobial Resistance of Bacillus cereus Group Isolated from Ice Cream and Characterized by Whole Genome Sequencing. Foods Basel Switz. 11, 2480. https://doi.org/10.3390/foods11162480
Grutsch, A.A., Nimmer, P.S., Pittsley, R.H., Kornilow, K.G., McKillip, J.L., 2018. Molecular Pathogen-esis of Bacillus spp., with Emphasis on the Dairy Industry. Fine Focus 4, 203–222. https://doi.org/10.33043/FF.4.2.203-222
Hayrapetyan, H., Muller, L., Tempelaars, M., Abee, T., Nierop Groot, M., 2015. Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron. Int. J. Food Microbiol. 200, 72–79. https://doi.org/10.1016/j.ijfoodmicro.2015.02.005
Hayrapetyan, H., Siezen, R., Abee, T., Nierop Groot, M., 2016. Comparative Genomics of Iron-Transporting Systems in Bacillus cereus Strains and Impact of Iron Sources on Growth and Biofilm Formation. Front. Microbiol. 7, 842. https://doi.org/10.3389/fmicb.2016.00842
Hindler, J.A., Richter, S.S., 2016. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria: M45, 3rd edition. ed, Documents / Clinical and La-boratory Standards Institute. Clinical and Laboratory Standards Institute, Wayne, PA.
Ivanova, N., Sorokin, A., Anderson, I., Galleron, N., Candelon, B., Kapatral, V., Bhattacharyya, A., Rez-nik, G., Mikhailova, N., Lapidus, A., Chu, L., Mazur, M., Goltsman, E., Larsen, N., D’Souza, M., Walunas, T., Grechkin, Y., Pusch, G., Haselkorn, R., Fonstein, M., Ehrlich, S.D., Overbeek, R., Kyrpides, N., 2003. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature 423, 87–91. https://doi.org/10.1038/nature01582
Jessberger, N., Dietrich, R., Granum, P.E., Märtlbauer, E., 2020. The Bacillus cereus Food Infection as Multifactorial Process. Toxins 12, 701. https://doi.org/10.3390/toxins12110701
Kim, Booyoung, Bang, J., Kim, H., Kim, Y., Kim, Byeong-sam, Beuchat, L.R., Ryu, J.-H., 2014. Bacil-lus cereus and Bacillus thuringiensis spores in Korean rice: Prevalence and toxin production as affected by production area and degree of milling. Food Microbiol. 42, 89–94. https://doi.org/10.1016/j.fm.2014.02.021
Kim, S.K., Kim, K.-P., Jang, S.S., Shin, E.M., Kim, M.-J., Oh, S., Ryu, S., 2009. Prevalence and Toxi-genic Profiles of Bacillus cereus Isolated from Dried Red Peppers, Rice, and Sunsik in Korea. J. Food Prot. 72, 578–582. https://doi.org/10.4315/0362-028X-72.3.578
Kotiranta, A., Lounatmaa, K., Haapasalo, M., 2000. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2, 189–198. https://doi.org/10.1016/s1286-4579(00)00269-0
Liu, Y., Lai, Q., Göker, M., Meier-Kolthoff, J.P., Wang, M., Sun, Y., Wang, L., Shao, Z., 2015. Genomic insights into the taxonomic status of the Bacillus cereus group. Sci. Rep. 5, 14082. https://doi.org/10.1038/srep14082
Majed, R., Faille, C., Kallassy, M., Gohar, M., 2016. Bacillus cereus Biofilms-Same, Only Different. Front. Microbiol. 7, 1054. https://doi.org/10.3389/fmicb.2016.01054
Ołtuszak-Walczak, E., Walczak, P., Modrak, R., 2006. Detection of enterotoxic Bacillus cereus produc-ing hemolytic and non hemolytic enterotoxins by PCR test. Pol. J. Microbiol. 55, 113–118.
Park, Y.-B., Kim, J.-B., Shin, S.-W., Kim, J.-C., Cho, S.-H., Lee, B.-K., Ahn, J., Kim, J.-M., Oh, D.-H., 2009. Prevalence, Genetic Diversity, and Antibiotic Susceptibility of Bacillus cereus Strains Isolated from Rice and Cereals Collected in Korea. J. Food Prot. 72, 612–617. https://doi.org/10.4315/0362-028X-72.3.612
Perera, M.L., Ranasinghe, G.R., 2012. Prevalence of Bacillus cereus and Associated Risk Factors in Chinese-Style Fried Rice Available in the City of Colombo, Sri Lanka. Foodborne Pathog. Dis. 9, 125–131. https://doi.org/10.1089/fpd.2011.0969
SAGARPA, 2017. Arroz Mexicano. (Federal), Planeacion agricola nacional 2017. 2030. SAGARPA, Ciudad de Mexico.
Schoeni, J.L., Wong, A.C.L., 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68, 636–648. https://doi.org/10.4315/0362-028x-68.3.636
Shemesh, M., Ostrov, I., 2020. Role of Bacillus species in biofilm persistence and emerging antibiofilm strategies in the dairy industry. J. Sci. Food Agric. 100, 2327–2336. https://doi.org/10.1002/jsfa.10285
Stenfors Arnesen, L.P., Fagerlund, A., Granum, P.E., 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32, 579–606. https://doi.org/10.1111/j.1574-6976.2008.00112.x
Wei, S., Chelliah, R., Park, B.-J., Park, J.-H., Forghani, F., Park, Y.-S., Cho, M.-S., Park, D.-S., Oh, D.-H., 2018. Molecular discrimination of Bacillus cereus group species in foods (lettuce, spinach, and kimbap) using quantitative real-time PCR targeting groEL and gyrB. Microb. Pathog. 115, 312–320. https://doi.org/10.1016/j.micpath.2017.12.079
Wijman, J.G.E., de Leeuw, P.P.L.A., Moezelaar, R., Zwietering, M.H., Abee, T., 2007. Air-liquid inter-face biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl. Environ. Micro-biol. 73,
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)