Composición química, actividad antioxidante y citotoxicidad de extractos de flores de Magnolia grandiflora L. encontradas en el sureste de México


  • Tomás Rivas-García CONACYT-Universidad Autonoma Chapingo
  • Jorge Alberto Alejandre-Rosas Facultad de Ciencias Químicas, Universidad Veracruzana, Oriente 6 1009, Col. Rafael Alvarado, Orizaba 94340, Veracruz, México.
  • Ángel Ramos-Ligonio Facultad de Ciencias Químicas, Universidad Veracruzana, Oriente 6 1009, Col. Rafael Alvarado, Orizaba 94340, Veracruz, México.
  • Marisol Castillo-Morales Facultad de Ciencias Químicas, Universidad Veracruzana, Oriente 6 1009, Col. Rafael Alvarado, Orizaba 94340, Veracruz, México.
  • Juan José Reyes-Pérez Universidad Técnica Estatal de Quevedo, Av. Quito Km 1.5 Vía a Santo Domingo, Quevedo, Los Ríos, Ecuador
  • Berenice Esquivel-Valenzuela Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas, Carretera Gómez Palacio-Ciudad Juárez, domicilio conocido, Bermejilo 35230, Durango, México.


Palabras clave:

Actividad biológica, Compuestos bioactivos, Plantas medicinales


Muchos estudios afirman que diferentes estructuras de M. grandiflora contienen componentes bioactivos. No obstante, los estudios fitoquímicos indican que los aceites esenciales extraídos son químicamente diferentes y notablemente variables en sus composiciones cualitativas y cuantitativas. Es necesario realizar más estudios sobre M. grandiflora cultivada en México. Por ello, el objetivo de esta investigación fue caracterizar a) la composición química, b) la actividad antioxidante y c) el efecto citotóxico de dos extractos de flores de M. grandiflora. La composición química se evaluó mediante una prueba fitoquímica preliminar seguida de cromatografía en capa fina y análisis espectrofotómetro mediante UV-Vis y FTIR. La actividad antioxidante de los extractos de flores se midió por el método de la actividad reductora de radicales libres (ABTS) y el método de radicales estables de 2,2-difenil-1-picril-hidrazilo (DPPH) y la citotoxicidad por un bioensayo de Artemia salina. Los extractos acuoso y etílico de flores mostraron la presencia de cromóforos orgánicos como los flavonoides. Ambos extractos (etilo y agua) demostraron actividad antioxidante tanto por ABTS (459,6 ± 8,5 µmol TE g-1 y 274,2 ± 5,7 µmol TE g-1 respectivamente) como por DPPH (3210,4 ± 2,5 µmol TE g-1 y 219,7 ± 0,9 µmol TE g-1 respectivamente) metodologías; y actividad no citotóxica (CL50, µg mL-1) (1,285±14 y 1,116±15 respectivamente). Los extractos acuosos y etílicos de las flores de M. grandiflora encontradas en el sureste de México son una fuente promisoria de compuestos químicos con actividad biológica atribuida por los resultados presentados.


Los datos de descargas todavía no están disponibles.


Al-Shareefi, E., Sahib, A. H. A. and Hameed, I. H. 2019. Phytochemical Screening by FTIR Spectroscopic Analysis and Anti-Fungal Activity of Fruit Extract of Selected Medicinal Plant of Rutagraveolens. Indian Journal of Public Health Research & Development. 10(1): 994-999.

Ashokkumar, R. and Ramaswamy, M. 2014. Phytochemical screening by FTIR spectroscopic analysis of leaf extracts of selected Indian medicinal plants. International journal of Current Microbiology and applied Sciences. 3(1): 395-406.

Avalos García, A. and Pérez-Urria C. E. 2009. Metabolismo secundario de plantas. Reduca. 2(3): 119-145.

Averesch, N. J. and Krömer, J. O. 2018. Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds—present and future strain construction strategies. Frontiers in bioengineering and biotechnology. 6, 32.

Bendif, H., Boudjeniba, M., Miara, M. D., Biqiku, L., Bramucci, M., Caprioli, G., ... and Maggi, F. 2017. Rosmarinus eriocalyx: An alternative to Rosmarinus officinalis as a source of antioxidant compounds. Food chemistry. 218, 78-88.

Brand-Williams, W., Cuvelier, M. E. and Berset, C. L. W. T. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology. 28(1): 25-30.

Cao, Y. G., Li, H. W., Cao, B., Wang, J. C., Zhang, Y. L., Zhao, X., ... and Feng, W. S. 2021. Two new phenylpropanoids and a new dihydrostilbenoid from the flower buds of Magnolia biondii pamp and their acetylcholinesterase inhibitory activities. Natural Product Research, 35(19), 3233-3240.

Carballo, T., Gil, M. V., Gómez, X., González-Andrés, F. and Morán, A. 2008. Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation. 19(6): 815-830.

Chilampalli, C., Guillermo, R., Kaushik, R. S., Young, A., Chandrasekher, G., Fahmy, H. and Dwivedi, C. 2011. Honokiol, a chemopreventive agent against skin cancer, induces cell cycle arrest and apoptosis in human epidermoid A431 cells. Experimental Biology and Medicine. 236(11): 1351-1359.

Cho, H. M., Park, E. J., Park, Y. J., Ponce-Zea, J., Doan, T. P., Ryu, B., ... and Oh, W. K. (2022). Sesquiterpene lactone and its unique proaporphine hybrids from Magnolia grandiflora L. and their anti-inflammatory activity. Phytochemistry. 200, 113211.

Dave, P.C., Vogler, B. and Setzer, W.N. 2012. Composition of the floral essential oil of Magnolia grandiflora L. (Magnoliaceae): intraspecific and floral maturity variations. Journal of Essential Oil Bear Plant. 15: 694-702.

Del Valle-Mondragón, L., Tenorio-López, F.A., Torres-Narváez, J.C., Zarco-Olvera, G. and Pastelín-Hernández, G. 2004. Estudio de los extractos de Magnolia grandiflora sobre el músculo cardíaco de cobayo. Archivos de cardiología de México. 74(2): 108-117.

Dominguez-Yescas, R. and Vázquez-García, J. A. 2019. Flower of the heart, Magnolia yajlachhi (subsect. Talauma, Magnoliaceae), a new species of ceremonial, medicinal, conservation and nurse tree relevance in the Zapotec culture, Sierra Norte de Oaxaca, Mexico. Phytotaxa. 393(1): 21-34.

Elansary, H. O., Szopa, A., Kubica, P., A. Al-Mana, F., Mahmoud, E. A., Zin El-Abedin, T. K. A., ... and Ekiert, H. 2019. Phenolic compounds of Catalpa speciosa, Taxus cuspidata, and Magnolia acuminata have antioxidant and anticancer activity. Molecules. 24(3): 412.

Farag, M.A., Al-Mahdy, D.A. 2013. Comparative study of the chemical composition and biological activities of Magnolia grandiflora and Magnolia virginiana flower essential oils. Natural Product Research. 27(12): 1091-1097.

Garza, B., Echeverria, A., Gonzalez, F., Castillo, O., Eubanks, T. and Bandyopadhyay, D. 2019. Phytochemical investigation of Magnolia grandiflora green seed cones: Analytical and phytoceutical studies. Food Science & Nutrition. 7(5): 1761-1767.

Ho, J.H.C. and Hong, C.Y. 2012. Cardiovascular protection of magnolol: cell-type specificity and dose-related effects. Journal of biomedical science. 19(1): 1-9.

Hong, L., Li, G., Zhou, W., Wang, X. and Zhang, K. 2007. Screening and isolation of a nematicidal sesquiterpene from Magnolia grandiflora L. Pest Management Science. 63(3): 301-305.

Huang, H.C., Hsieh, W.Y., Niu, Y.L. and Chang, T.M. 2012. Inhibition of melanogenesis and antioxidant properties of Magnolia grandiflora L. flower extract. BMC Complementary and Alternative Medicine. 12(1): 1-9.

Hussein, R. A. and El-Anssary, A. A. 2019. Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. Herbal Medicine. 1(3).

Karpagasundari, C. and Kulothungan, S. 2014. Analysis of bioactive compounds in Physalis minima leaves using GC MS, HPLC, UV-VIS and FTIR techniques. Journal of Pharmacognosy and Phytochemistry. 3(4): 196-201.

Kim, B.H. and Cho, J.Y. 2008. Anti‐inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression 1. Acta Pharmacologica Sinica. 29(1): 113-122.

Krishnaraju, A.V., Rao, T.V., Sundararaju, D., Vanisree, M., Tsay, H.S. and Subbaraju, G. V. 2005. Assessment of bioactivity of Indian medicinal plants using brine shrimp (Artemia salina) lethality assay. International Journal of Applied Sciences and Engineering. 3(2): 125-34.

Lan, K.H., Wang, Y.W., Lee, W.P., Lan, K.L., Tseng, S.H., Hung, L.R. and Lee, S.D. 2012. Multiple effects of Honokiol on the life cycle of hepatitis C virus. Liver International. 32(6): 989-997.

Latif, A., Du, Y., Dalal, S.R., Fernández‐Murga, M.L., Merino, E.F., Cassera, M.B. and Kingston, D.G. 2017. Bioactive neolignans and other compounds from Magnolia grandiflora L.: isolation and antiplasmodial activity. Chemistry & biodiversity. 14(9): e1700209.

Lee, Y.J., Lee, Y.M., Lee, C.K., Jung, J.K., Han, S.B. and Hong, J.T. 2011. Therapeutic applications of compounds in the Magnolia family. Pharmacology & therapeutics. 130(2): 157-176.

Li, Q.Q., Wang, G., Zhang, M., Cuff, C.F., Huang, L. and Reed, E. 2009. β-Elemene, a novel plant-derived antineoplastic agent, increases cisplatin chemosensitivity of lung tumor cells by triggering apoptosis. Oncology Reports. 22: 161-170.

Lim, T.K. 2014. Magnolia grandiflora. In Edible Medicinal and Non Medicinal Plants (pp. 243-275). Springer, Dordrecht.

Ma, H., Bai, X., Sun, X., Li, B., Zhu, M., Dai, Y. and Wu, C.Z. 2020. Anti-cancer effects of methanol-ethyl acetate partitioned fraction from Magnolia grandiflora in human non-small cell lung cancer H1975 cells. Journal of Bioenergetics and Biomembranes. 52(3): 1-9.

Martínez-Báez, A.Z., Oranday-Cárdenas, M.A., Verde-Star, M.J., Arévalo-Niño, K., González-González, G.M. and Rodríguez-Garza, R.G. 2016. Estudio preliminar sobre la actividad antioxidante y antibacteriana de los extractos metanólicos de Azadirachta indica, Juglans regia, Tecoma stans y Magnolia grandiflora. Revista Mexicana de Ciencias Farmacéuticas. 47(2): 36-44.

Medda, S., Fadda, A., Dessena, L. and Mulas, M. 2021. Quantification of total phenols, tannins, anthocyanins content in Myrtus communis L. And antioxidant activity evaluation in function of plant development stages and altitude of origin site. Agronomy. 11(6): 1059.

Morshedloo, M.R., Quassinti, L., Bramucci, M., Lupidi, G. and Maggi, F. 2017. Chemical composition, antioxidant activity and cytotoxicity on tumour cells of the essential oil from flowers of Magnolia grandiflora cultivated in Iran. Natural product research. 31(24): 2857-2864.

Niitsuma, T., Morita, S., Hayashi, T., Homma, M. and Oka, K. 2001. Effects of absorbed components of saiboku-to on the release of leukotrienes from polymorphonuclear leukocytes of patients with bronchial asthma. Methods and findings in experimental and clinical pharmacology. 23(2): 99.

Njoku, D.I., Chidiebere, M.A., Oguzie, K.L., Ogukwe, C.E. and Oguzie, E.E. 2013. Corrosion inhibition of mild steel in hydrochloric acid solution by the leaf extract of Nicotiana tabacum. Advances in Materials and Corrosion. 2(1): 54-61.

Okerulu, I.O. and Ani, C.J. 2001. The phytochemical analysis and antibacterial screening of extracts of Tetracarpidium conophorum. Journal of Chemical society of Nigeria. 26(1): 53-55.

Oliveira, R.N., Mancini, M.C., Oliveira, F.C.S.D., Passos, T.M., Quilty, B., Thiré, R.M.D. S.M. and McGuinness, G.B. 2016. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria. 21: 767-779.

Organización Mundial de la Salud (OMS). 2003. Directrices de la OMS sobre buenas prácticas agrícolas y de recolección (BPAR) de plantas medicinales. Octubre, 06, 2017, de Organización Mundial de la Salud.

Pramila, D.M., Xavier, R., Marimuthu, K., Kathiresan, S., Khoo, M.L., Senthilkumar, M. and Sreeramanan, S. 2012. Phytochemical analysis and antimicrobial potential of methanolic leaf extract of peppermint (Mentha piperita: Lamiaceae). Journal of Medicinal Plants Research. 6(2): 331-335.

Qu, L.L., Jia, Q., Liu, C., Wang, W., Duan, L., Yang, G. and Li, H. 2018. Thin layer chromatography combined with surface-enhanced raman spectroscopy for rapid sensing aflatoxins. Journal of chromatography. 1579: 115-120.

Raut, J.S. and Karuppayil, S.M. 2014. A status review on the medicinal properties of essential oils. Industrial Crops and Products. 62: 250-264.

Sánchez-Recillas, A., Mantecón-Reyes, P., Castillo-España, P., Villalobos-Molina, R., Ibarra-Barajas, M. and Estrada-Soto, S. 2014. Tracheal relaxation of five medicinal plants used in Mexico for the treatment of several diseases. Asian Pacific Journal of Tropical Medicine. 7(3): 179-183.

Schühly, W, Khan, S.I. and Fischer, N.H. 2009. Neolignans from North American Magnolia species with cyclooxygenase 2 inhibitory activity. Inflammopharmacology. 17(2): 106-110.

Serna-González, M. and Guzman-Vasquez, J.D. 2010. Una mirada a las magnoliáceas colombianas. Revista politécnica. 6(11): 105-111.

Sherma, J. and Fried, B. (Eds.). 2003. Handbook of thin-layer chromatography. CRC press.

Singleton, V. L. and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture. 16(3): 144-158.

Tungmunnithum, D., Thongboonyou, A., Pholboon, A. and Yangsabai, A. 2018. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines. 5(3): 93.

Yadav, A. R. and Mohite, S. K. 2020. Toxicоlogical Evaluation of Psidium guajava Leaf Extracts using Brine Shrimp (Artemia salina L.) Model. Research Journal of Pharmaceutical Dosage Forms and Technology. 12(4): 258-260.

Wang, N., Zhang, C., Bian, S., Chang, P., Xuan, L., Fan, L., ... and Shen, Y. 2019. Flavonoid components of different color Magnolia flowers and their relationship to cultivar selections. Hortscience. 54(3): 404-408.

Wu, L., Chen, C., Cheng, C., Dai, H., Ai, Y., Lin, C. and Chung, Y. 2018. Evaluation of tyrosinase inhibitory, antioxidant, antimicrobial, and antiaging activities of Magnolia officinalis extracts after Aspergillus niger fermentation. BioMed Research International. 2018.

Zhang, J., Chen, Z., Huang, X., Shi, W., Zhang, R., Chen, M. and Wu, L. 2019. Insights on the multifunctional activities of magnolol. BioMed Research International. 2019: 1-15.



Cómo citar

Rivas-García, T., Alejandre-Rosas, J. A. ., Ramos-Ligonio, Ángel, Castillo-Morales, M. ., Reyes-Pérez, J. J. ., & Esquivel-Valenzuela, B. . (2022). Composición química, actividad antioxidante y citotoxicidad de extractos de flores de Magnolia grandiflora L. encontradas en el sureste de México . Biotecnia, 25(1), 5–13.



Artículos originales


Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.