Caracterización fisicoquímica, tecno-funcional y antioxidante de la piel plateada del café

Autores/as

  • Rey David Vargas-Sánchez CENTRO DE INVESTIGACIÓN EN ALIMENTACIÓN Y DESARROLLO, AC https://orcid.org/0000-0002-8537-1155
  • Brisa del Mar Torres-Martínez CENTRO DE INVESTIGACIÓN EN ALIMENTACIÓN Y DESARROLLO, AC https://orcid.org/0000-0003-0354-9982
  • Gastón Ramón Torrescano-Urrutia CENTRO DE INVESTIGACIÓN EN ALIMENTACIÓN Y DESARROLLO, AC
  • Armida Sánchez-Escalante CENTRO DE INVESTIGACIÓN EN ALIMENTACIÓN Y DESARROLLO, A.C.

DOI:

https://doi.org/10.18633/biotecnia.v25i1.1755

Palabras clave:

residuos de café, compuestos químicos, propiedades fisicoquímicas, propiedades tecno-funcionales, antioxidante

Resumen

Los residuos de café se han considerado una fuente valiosa de componentes nutricionales y funcionales, por ello se consideran un ingrediente potencial para la industria alimentaria. El objetivo del estudio fue evaluar las propiedades fisicoquímicas, tecno-funcionales y antioxidantes de hojuelas y harina de cascarilla de café. Las hojuelas y la harina de piel plateada de café mostraron un pH cercano a la neutralidad, y el color fue café romano y café profundo, respectivamente, lo que indica que el proceso de molienda cambia este parámetro. Los resultados indicaron que las hojuelas de cascarilla de café mostraron la mayor capacidad de retención de agua y aceite, mientras que ambos residuos presentaron ligera capacidad de hinchamiento, formación de espuma y estabilidad de espuma, sin efecto del proceso de molienda. Sin embargo, ambos residuos no presentaron capacidad de emulsión y gelificación, así como estabilidad de la emulsión. La presencia de fenoles, flavonoides, ácido cafeoilquínico y alcaloides (harina > hojuelas) fue detectada en ambos residuos, los cuales ejercieron actividad DPPH y ABTS•+ (harina = hojuelas), poder reductor e inhibición de oxidación de lípidos (harina > hojuelas). En conclusión, la cascarilla de café puede proponerse como ingrediente funcional para la industria alimentaria.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Al-Yousef, H.M., Sawab, A. and Alruhimi, M. 2017. Pharmacognostic studies on coffee Arabica L. husks: a brilliant source of antioxidant agents. European Journal of Pharmaceutical and Medical Research. 4: 86-92.

Ainsworth, E.A. and Gillespie, K.M. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols. 2(4): 875-877. https://doi.org/10.1038/nprot.2007.102

AOAC. 2020. AOAC 943.02, pH of flour, potentiometric method. Association of Official Analytical Chemists. [Consulted 27 April 2022]. Available in: http://www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=937

Balestra, F. and Petracci, M. 2019. Technofunctional ingredients for meat products: Current challenges. In Sustainable meat production and processing. C.M. Galanakis (ed.), pp 45-68. Academic Press. Elsevier. Inc., New York.

Ballesteros, L.F., Teixeira, J.A. and Mussatto, S.I. 2014. Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food and bioprocess technology. 7(12): 3493-3503. https://doi.org/10.1007/s11947-014-1349-z

Banaszkiewicz, T. 2011. Nutritional value of soybean Meal. In: Soybean and Nutrition. Hany El-Shemy (Ed.), pp 1-23. IntechOpen, Croatia.

Benitez, V., Rebollo-Hernanz, M., Hernanz, S., Chantres, S., Aguilera, Y. and Martin-Cabrejas, M.A. 2019. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Research International. 122: 105-113. https://doi.org/10.1016/j.foodres.2019.04.002

Benzie, I.F. and Strain, J.J. 1999. Ferric reducing antioxidant power assay: Direct measurement of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method Enzymology. 299: 15-27. https://doi.org/10.1016/S0076-6879(99)99005-5

Berker, K.I., Güçlü, K., Demirata, B. and Apak, R. 2010. A novel antioxidant assay of ferric reducing capacity measurement using ferrozine as the colour forming complexation reagent. Analytical Methods. 2: 1770-1778. https://doi.org/10.1039/C0AY00245C

CDRSSA. 2019. Evolución de la producción y consumo de alimentos en México (2000-2018). [Consulted 27 April 2022]. Available in: http://www.cedrssa.gob.mx/files/b/13/13MSMM-F_EvolucionProd-Cons.pdf

Codex Alimentarius. 1995. Norma general para los aditivos alimentarios [Consulted 27 April 2022]. Available in: http://www.fao.org/gsfaonline/docs/CXS_192s.pdf

COMECARNE. 2021. Consejo Mexicano de la Carne, compendio estadístico. [Consulted 27 April 2022]. Available in: https://comecarne.us2.list-manage.com/track/click?u=22650f36f23cf8841c5225d13&id=85af93fc6f&e=834f0eecf8

Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F.J., Zhang, W. and Lorenzo, J.M. 2019. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants. 8: 429. https://doi.org/10.3390/antiox8100429

Echegaray, N., Pateiro, M., Munekata, P.E., Lorenzo, J.M., Chabani, Z., Farag, M.A. and Domínguez, R. 2021. Measurement of Antioxidant Capacity of meat and meat products: methods and applications. Molecules. 26(13): 3880. https://doi.org/10.3390/molecules26133880

Getaneh, E., Fanta, S. W. and Satheesh, N. (2020). Effect of broken coffee beans particle size, roasting temperature, and roasting time on quality of coffee beverage. Journal of Food Quality. Article ID 8871577: 1-15. https://doi.org/10.1155/2020/8871577

Griffiths, D.W., Bain, H. and Dale, M.F.B. 1992. Development of a rapid colorimetric method for the determination of chlorogenic acid in freeze‐dried potato tubers. Journal of the Science of Food and Agriculture. 58(1): 41-48. https://doi.org/10.1002/jsfa.2740580108

Haque, M.A., Akter, F., Rahman, H. and Baqui, M.A. 2020. Jackfruit seeds protein isolate by spray drying method: the functional and physicochemical characteristics. Food and Nutrition Sciences. 11: 355-374. https://doi.org/10.4236/fns.2020.115026

Jully, K.M.M., Toto, C.S. and Were, L. 2016. Antioxidant effect of spent, ground, and lyophilized brew from roasted coffee in frozen cooked pork patties. LWT-Food Science and Technology. 66: 244-251. https://doi.org/10.1016/j.lwt.2015.10.046

Kim, J.H., Ahn, D.U., Eun, J.B. and Moon, S.H. 2016. Antioxidant effect of extracts from the coffee residue in raw and cooked meat. Antioxidants. 5: 21. https://dx.doi.org/10.3390%2Fantiox5030021

Liu, T., Hou, G. G., Lee, B., Marquart, L. and Dubat, A. 2016. Effects of particle size on the quality attributes of reconstituted whole-wheat flour and tortillas made from it. Journal of Cereal Science. 71: 145-152. https://doi.org/10.1016/j.jcs.2016.08.013

López-Marcos, M.C., Bailina, C., Viuda-Martos, M., Pérez-Alvarez, J.A. and Fernández-López, J. 2015. Properties of dietary fibers from agroindustrial coproducts as source for fiber-enriched foods. Food and Bioprocess Technology. 8: 2400-2408. https://doi.org/10.1007/s11947-015-1591-z

Martuscelli, M., Esposito, L. and Mastrocola, D. 2021a. The role of coffee silverskin against oxidative phenomena in newly formulated chicken meat burgers after cooking. Foods. 10: 1833. https://doi.org/10.3390/foods10081833

Martuscelli, M., Esposito, L., Di Mattia, C. D., Ricci, A. and Mastrocola, D. 2021b. Characterization of coffee silverskin as potential food-safe ingredient. Foods. 10(6): 1367. https://doi.org/10.3390/foods10061367

Molyneux, P. 2004. The use of the stable free radical diphenyl picrylhydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology. 26: 211-219.

Mugabi, R. 2021. Effect of particle size on color of ground coffee. Asian Food Science Journal. 20(10): 137-144.

Oswell, N.J., Thippareddi, H. and Pegg, R.B. 2018. Practical use of natural antioxidants in meat products in the US: A review. Meat Science. 145: 469-479. https://doi.org/10.1016/j.meatsci.2018.07.020

Popova, M., Bankova, V., Butovska, D., Petkov, V., Nikolova-Damyanova, B., Sabatini, A. G., Marcazzan, G.L. and Bogdanov, S. 2004. Validated methods for the quantification of biologically active constituents of poplar type propolis. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques. 15(4): 235-240. https://doi.org/10.1002/pca.777

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Robertson, A.R., Lozano, R.D., Alman, D.H., Orchard, S.E., Keitch, J.A., Connely, R., Graham, L.A., Acree, W.L., John, R.S., Hoban, R.F., et al. 1977. CIE Recommendations on uniform color spaces, color-difference equations, and metric color terms. Color Research and Application. 2: 5-6.

Samejo, M.Q., Memon, S., Bhanger, M.I. and Khan, K.M. 2011. Preliminary phytochemicals screening of Calligonum polygonoides Linn. Journal of Pharmacy Research. 4: 4402-4403.

Samejo, M.Q., Sumbul, A., Shah, S., Memon, S.B. and Chundrigar, S. 2013. Phytochemical screening of Tamarix dioica Roxb. ex Roch. Journal of Pharmacy Research. 7: 181-183. http://dx.doi.org/10.1016/j.jopr.2013.02.017

Saxena, M., Saxena, J., Nema, R., Singh, D. and Gupta, A. 2013. Phytochemistry of medicinal plants. Journal of Pharmacognosy and Phytochemistry. 1: 168-182.

Spence, C. 2018. Background colour & its impact on food perception & behaviour. Food Quality and Preference. 68: 156-166. https://doi.org/10.1016/j.foodqual.2018.02.012

USDA. 2021. US Department of Agriculture, additives in meat and poultry products. [Consulted 27 April 2022]. Available in: https://www.fsis.usda.gov/food-safety/safe-food-handling-and-preparation/food-safety-basics/additives-meat-and-poultry

Velázquez, L., Quiñones, J., Díaz, R., Pateiro, M., Lorenzo, J.M. and Sepúlveda, N. 2021. Natural antioxidants from endemic leaves in the elaboration of processed meat products: current status. Antioxidants. 10: 1396. https://doi.org/10.3390/antiox10091396

Zengin, G., Sinan, K.I., Mahomoodally, M.F., Angeloni, S., Mustafa, A.M., Vittori, S., Maggi, F. and Caprioli, G. 2020. Chemical composition, antioxidant and enzyme inhibitory properties of different extracts obtained from spent coffee ground and coffee silverskin. Foods. 9(6): 713. https://doi.org/10.3390/foods9060713

Publicado

2022-11-15

Cómo citar

Vargas-Sánchez, R. D. ., Torres-Martínez, B. del M. ., Torrescano-Urrutia, G. R. ., & Sánchez-Escalante, A. (2022). Caracterización fisicoquímica, tecno-funcional y antioxidante de la piel plateada del café. Biotecnia, 25(1), 43–50. https://doi.org/10.18633/biotecnia.v25i1.1755

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

<< < 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.