Un método simple de solución para preparar precursores de VO2:Co2+ para la deposición de película delgada mediante el método de procesamiento en solución
Un método simple de solución para preparar películas delgadas de VO2:Co2+
DOI:
https://doi.org/10.18633/biotecnia.v25i2.1886Palabras clave:
oxido de vanadio dopado con cobalto, películas delgadas mediante recubrimiento centrifugo, morfología porosa, procesamiento de la solución sin complejantes.Resumen
El procesamiento de soluciones es un método de bajo costo para preparar una variedad de películas delgadas orgánicas o inorgánicas. Para compuestos de óxidos metálicos, un procesamiento de solución de un compuesto organometálico se usa con frecuencia como solución precursora para ser recubierta por rotación, seguida de un tratamiento térmico para formar el óxido metálico. En este trabajo se obtienen polvos de óxido de vanadio a partir de una simple reacción ácido-base, y luego se dispersan en alcohol isopropílico para formar una solución para spin-coating. También se agregan diferentes cantidades de sal de cobalto junto con VOx en alcohol isopropílico para formar soluciones de VOx:Co2+. Después del tratamiento térmico a 200 °C, se obtienen películas delgadas transparentes. Se analizan las propiedades ópticas, estructurales, morfológicas y químicas. Se encontró que el compuesto VO2:Co2+ es amorfo y se obtiene con una relación atómica V:Co variada de 6.6:1-1.6:1. El material presenta una absorción óptica alrededor de 2.3 eV. Se observa una interesante morfología porosa interconectada cuando la relación atómica de V:Co es ~4.9:1. Se concluye que se pueden obtener películas delgadas amorfas porosas de VO2:Co2+ a partir del spin-coating a una baja temperatura de tratamiento utilizando una solución simple sin agente complejante.
Descargas
Citas
A. Herera-Gomez (no date) AAnalyzer a peak-fitting program for photoemission data. Available at: http://rdataa.com/aanalyzer/aanaHome.htm (Accessed: 18 April 2020).
Bae, J. W., Koo, B. R. and Ahn, H. J. (2019) ‘Fe doping effect of vanadium oxide films for enhanced switching electrochromic performances’, Ceramics International, 45(6), pp. 7137–7142. doi: 10.1016/j.ceramint.2018.12.219.
Biesinger, M. C. et al. (2011) ‘Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni’, Applied Surface Science, 257(7), pp. 2717–2730. doi: 10.1016/j.apsusc.2010.10.051.
Cabrera-German, D., Gomez-Sosa, G. and Herrera-Gomez, A. (2016) ‘Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al Kα radiation: I: cobalt spinel’, Surface and Interface Analysis, 48(5), pp. 252–256. doi: 10.1002/sia.5933.
Channu, V. S. R. et al. (2011) ‘Electrochemical properties of polyaniline-modified sodium vanadate nanomaterials’, Applied Physics A: Materials Science and Processing, 104(2), pp. 707–711. doi: 10.1007/s00339-011-6325-0.
Fuentes-Ríos, J. L. et al. (2021) ‘Modulation of the Pb/Sn ratio in Pb1-xSnxS thin films synthesized by chemical solution deposition’, Materials Science in Semiconductor Processing, 136(July). doi: 10.1016/j.mssp.2021.106126.
Geng, X. et al. (2022) ‘Tuning Phase Transition and Thermochromic Properties of Vanadium Dioxide Thin Films via Cobalt Doping’, ACS Applied Materials and Interfaces. doi: 10.1021/acsami.2c03113.
Hajzeri, M. et al. (2012) ‘Sol-gel vanadium oxide thin films for a flexible electronically conductive polymeric substrate’, Solar Energy Materials and Solar Cells, 99, pp. 62–72. doi: 10.1016/j.solmat.2011.03.041.
Ho, H. C. et al. (2019) ‘High quality thermochromic VO2 films prepared by magnetron sputtering using V2O5 target with in situ annealing’, Applied Surface Science, 495(July), p. 143436. doi: 10.1016/j.apsusc.2019.07.178.
Hryha, E., Rutqvist, E. and Nyborg, L. (2012) ‘Stoichiometric vanadium oxides studied by XPS’, Surface and Interface Analysis, 44(8), pp. 1022–1025. doi: 10.1002/sia.3844.
Hu, F. et al. (2017) ‘Synthesis and electrochemical performance of NaV6O15 microflowers for lithium and sodium ion batteries’, RSC Advances, 7(47), pp. 29481–29488. doi: 10.1039/c7ra04388k.
Ji, C. et al. (2018) ‘High thermochromic performance of Fe/Mg co-doped VO2 thin films for smart window applications’, Journal of Materials Chemistry C, 6(24), pp. 6502–6509. doi: 10.1039/c8tc01111g.
Khatibani, A. B., Abbasi, M. and Rozati, S. M. (2016) ‘Peculiarities of deposition times on gas sensing behaviour of vanadium oxide thin films’, Acta Physica Polonica A, 129(6), pp. 1245–1251. doi: 10.12693/APhysPolA.129.1245.
Li, B. et al. (2019) ‘Tungsten doped M-phase VO2 mesoporous nanocrystals with enhanced comprehensive thermochromic properties for smart windows’, Ceramics International, 45(4), pp. 4342–4350. doi: 10.1016/j.ceramint.2018.11.109.
Liu, S. et al. (2020) ‘One-step microwave-controlled synthesis of CoV2O6•2H2O nanosheet for super long cycle-life battery-type supercapacitor’, Electrochimica Acta, 364, p. 137320. doi: 10.1016/j.electacta.2020.137320.
Lu, C. et al. (2019) ‘Terahertz Transmittance of Cobalt-Doped VO2 Thin Film: Investigated by Terahertz Spectroscopy and Effective Medium Theory’, IEEE Transactions on Terahertz Science and Technology, 9(2), pp. 177–185. doi: 10.1109/TTHZ.2019.2894516.
Mane, A. A. and Moholkar, A. V. (2017) ‘Effect of film thickness on NO 2 gas sensing properties of sprayed orthorhombic nanocrystalline V 2 O 5 thin films’, Applied Surface Science, 416(2), pp. 511–520. doi: 10.1016/j.apsusc.2017.04.097.
Martínez-Gil, M. et al. (2020) ‘Effect of annealing temperature on the thermal transformation to cobalt oxide of thin films obtained via chemical solution deposition’, Materials Science in Semiconductor Processing, 107(October 2019). doi: 10.1016/j.mssp.2019.104825.
Peng, B. et al. (2018) ‘Transparent AlON ceramic combined with VO2 thin film for infrared and terahertz smart window’, Ceramics International, 44(12), pp. 13674–13680. doi: 10.1016/j.ceramint.2018.04.205.
Petnikota, S. et al. (2018) ‘Amorphous Vanadium Oxide Thin Films as Stable Performing Cathodes of Lithium and Sodium-Ion Batteries’, Nanoscale Research Letters, 13, pp. 1–13. doi: 10.1186/s11671-018-2766-0.
Sharma, G. P. et al. (2021) ‘Chalcogenide Dopant-Induced Lattice Expansion in Cobalt Vanadium Oxide Nanosheets for Enhanced Supercapacitor Performance’, ACS Applied Energy Materials, 4(5), pp. 4758–4771. doi: 10.1021/acsaem.1c00357.
Shen, N. et al. (2021) ‘Vanadium dioxide for thermochromic smart windows in ambient conditions’, Materials Today Energy, 21, p. 100827. doi: 10.1016/j.mtener.2021.100827.
Silversmit, G. et al. (2004) ‘Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+)’, Journal of Electron Spectroscopy and Related Phenomena, 135(2–3), pp. 167–175. doi: 10.1016/j.elspec.2004.03.004.
Silversmit, G. et al. (2006) ‘An XPS study on the surface reduction of V2O5(0 0 1) induced by Ar+ ion bombardment’, Surface Science, 600(17), pp. 3512–3517. doi: 10.1016/j.susc.2006.07.006.
Tabatabai Yazdi, S., Pilevar Shahri, R. and Shafei, S. (2021) ‘First synthesis of In-doped vanadium pentoxide thin films and their structural, optical and electrical characterization’, Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 263(August 2020), p. 114755. doi: 10.1016/j.mseb.2020.114755.
Wang, S. et al. (2011) ‘Three-dimensional porous V 2O 5 cathode with ultra high rate capability’, Energy and Environmental Science, 4(8), pp. 2854–2857. doi: 10.1039/c1ee01172c.
Wang, S. et al. (2020) ‘Facile synthesis of VO2 (D) and its transformation to VO2(M) with enhanced thermochromic properties for smart windows’, Ceramics International, 46(10), pp. 14739–14746. doi: 10.1016/j.ceramint.2020.02.278.
Xu, Y. et al. (2019) ‘Ammonium Vanadium Bronze as a Potassium-Ion Battery Cathode with High Rate Capability and Cyclability’, Small Methods, 3(8), pp. 1–9. doi: 10.1002/smtd.201800349.
Yang, J. et al. (2010) ‘Synthesis and characterization of Cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs’, Journal of Physical Chemistry C, 114(1), pp. 111–119. doi: 10.1021/jp908548f.
Yao, X. et al. (2018) ‘Cesium-Doped Vanadium Oxide as the Hole Extraction Layer for Efficient Perovskite Solar Cells’, ACS Omega, 3(1), pp. 1117–1125. doi: 10.1021/acsomega.7b01944.
Yuan, L. et al. (2021) ‘In-Situ thermochromic mechanism of Spin-Coated VO2 film’, Applied Surface Science, 564(June), p. 150441. doi: 10.1016/j.apsusc.2021.150441.
Zhan, Y. et al. (2020) ‘Tuning thermochromic performance of VOx-based multilayer films by controlling annealing pressure’, Ceramics International, 46(2), pp. 2079–2085. doi: 10.1016/j.ceramint.2019.09.188.
Zhou, X. et al. (2020) ‘Abnormal dependence of microstructures and electrical properties of Y-doped VO2 thin films on deposition temperature’, Ceramics International, 46(11), pp. 18315–18321. doi: 10.1016/j.ceramint.2020.05.053.
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)