Síntesis y caracterización de películas poliméricas compuestas de PbI2 / PVA para aplicaciones optoelectrónicas
DOI:
https://doi.org/10.18633/biotecnia.v26.2441Palabras clave:
Precipitación química, Yoduro de Plomo, películas compuestas, Alcohol polivinílico, optoelectrónicoResumen
Se sintetizaron películas compuestas de alcohol polivinílico/yoduro de plomo (PVA/PbI2) con diferentes concentraciones de PbI2 utilizando un proceso de evaporación de solventes a baja temperatura y de bajo costo. Las propiedades estructurales de las partículas obtenidas fueron analizadas mediante difracción de rayos X (DRX) y microscopía electrónica de barrido (MEB). Los resultados de DRX mostraron una naturaleza predominantemente cristalina, exhibiendo los planos de reflexión característicos del politipo 2H del yoduro de plomo. Las micrografías MEB mostraron una morfología hexagonal con un tamaño promedio de partícula de 13.2 µm. Los parámetros ópticos de las películas compuestas se midieron mediante espectroscopía UV-Vis, encontrándose que la brecha de energía indirecta para el PVA puro es de 4.65 eV. En contraste, las películas de PVA/PbI2 con concentraciones de 0.5, 1.0, 1.5 y 2.0 % en peso de PbI2 mostró una transición directa de 5.16 eV y una transición indirecta de 4.45 eV. La resistencia eléctrica de la película de PVA se midió en 4.32 × 107 Ω. Los análisis químicos mediante espectroscopía infrarroja por transformada de Fourier (FTIR) indicaron que la adición de partículas de PbI2 no modifica las bandas características del PVA, lo que sugiere la ausencia de enlaces químicos entre las partículas y la matriz polimérica. Las propiedades ópticas y eléctricas obtenidas sugieren que las películas compuestas de PVA/PbI2 tienen potencial para aplicaciones en el campo de la optoelectrónica.
Descargas
Citas
Abdelaziz, M. (2011a) ‘Cerium (III) doping effects on optical and thermal properties of PVA films’, Physica B: Condensed Matter, 406(6–7), pp. 1300–1307. Available at: https://doi.org/10.1016/j.physb.2011.01.021.
Abdelaziz, M. (2011b) ‘Cerium (III) doping effects on optical and thermal properties of PVA films’, Physica B: Condensed Matter, 406(6–7), pp. 1300–1307. Available at: https://doi.org/10.1016/j.physb.2011.01.021.
Abdullah, O.G. et al. (2015) ‘Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite’, Journal of Materials Science: Materials in Electronics, 26(7), pp. 5303–5309. Available at: https://doi.org/10.1007/s10854-015-3067-3.
Ali, H. (2019a) ‘The influence of yttrium-ions on the optical and electrical behavior of pva polymeric films’, Materials Research Express, 6(4). Available at: https://doi.org/10.1088/2053-1591/aafbee.
Ali, H. (2019b) ‘The influence of yttrium-ions on the optical and electrical behavior of pva polymeric films’, Materials Research Express, 6(4). Available at: https://doi.org/10.1088/2053-1591/aafbee.
Almohammedi, A. et al. (2020) ‘Elucidating the impact of PbI2 on photophysical and electrical properties of poly(3-hexythiophene)’, Materials Science in Semiconductor Processing, 120. Available at: https://doi.org/10.1016/j.mssp.2020.105272.
Aslam, M., Kalyar, M.A. and Raza, Z.A. (2018) ‘Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites’, Polymer Engineering and Science, 58(12), pp. 2119–2132. Available at: https://doi.org/10.1002/pen.24855.
Baibarac, M. et al. (2015) ‘Exciton-phonon interaction in PbI2 revealed by Raman and photoluminescence studies using excitation light overlapping the fundamental absorption edge’, Materials Research Bulletin, 70, pp. 762–772. Available at: https://doi.org/10.1016/j.materresbull.2015.06.012.
Dong, Z. et al. (2019) ‘Raman characterization on two-dimensional materials-based thermoelectricity’, Molecules, 24(1). Available at: https://doi.org/10.3390/molecules24010088.
El-Mongy, S.A., Mohammed, M.I. and Yahia, I.S. (2020) ‘Preparation and spectroscopic studies of PbI2-doped poly(methyl methacrylate) nanocomposites films: Dielectric and optical limiting approach’, Optical Materials, 100(December 2019), p. 109626. Available at: https://doi.org/10.1016/j.optmat.2019.109626.
El-Zahhar, A.A. et al. (2022a) ‘Pronounced effect of PbI2 nanoparticles doping on optoelectronic properties of PVA films for photo-electronic applications’, Physica B: Condensed Matter, 630(November 2021), p. 413604. Available at: https://doi.org/10.1016/j.physb.2021.413604.
El-Zahhar, A.A. et al. (2022b) ‘Pronounced effect of PbI2 nanoparticles doping on optoelectronic properties of PVA films for photo-electronic applications’, Physica B: Condensed Matter, 630(November 2021), p. 413604. Available at: https://doi.org/10.1016/j.physb.2021.413604.
Ismail, R.A. et al. (2016) ‘Synthesis of PbI2 nanoparticles by laser ablation in methanol’, Journal of Materials Science: Materials in Electronics, 27(10), pp. 10696–10700. Available at: https://doi.org/10.1007/s10854-016-5169-y.
Khairy, Y., Yahia, I.S. and Elhosiny Ali, H. (2020) ‘Facile synthesis, structure analysis and optical performance of manganese oxide-doped PVA nanocomposite for optoelectronic and optical cut-off laser devices’, Journal of Materials Science: Materials in Electronics, 31(10), pp. 8072–8085. Available at: https://doi.org/10.1007/s10854-020-03348-0.
Li, M. et al. (2021) ‘Preparation, microstructure and tensile properties of two dimensional MXene reinforced copper matrix composites’, Materials Science and Engineering A, 803(December 2020), p. 140699. Available at: https://doi.org/10.1016/j.msea.2020.140699.
Li, X. et al. (2021a) ‘Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-wide and tunable sensing range’, Composites Communications, 23(December 2020), p. 100586. Available at: https://doi.org/10.1016/j.coco.2020.100586.
Li, X. et al. (2021b) ‘Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-wide and tunable sensing range’, Composites Communications, 23(December 2020), p. 100586. Available at: https://doi.org/10.1016/j.coco.2020.100586.
Lima, A.F.S. et al. (2022) ‘Dilemas éticos durante la pandemia del covid-19’, Revista Bioética, 30(1), pp. 19–26. Available at: https://doi.org/10.1590/1983-80422022301502es.
Liu, B., Zhang, J. and Guo, H. (2022) ‘Research Progress of Polyvinyl Alcohol Water-Resistant Film Materials’, Membranes. MDPI. Available at: https://doi.org/10.3390/membranes12030347.
Malevu, T.D., Ocaya, R.O. and Tshabalala, K.G. (2016) ‘Phase transformations of high-purity PbI2 nanoparticles synthesized from lead-acid accumulator anodes’, Physica B: Condensed Matter, 496, pp. 69–73. Available at: https://doi.org/10.1016/j.physb.2016.05.027.
Manh, D.H. et al. (2023) ‘Determination of the crystalline size of hexagonal La1−xSrxMnO3 (x = 0.3) nanoparticles from X-ray diffraction - a comparative study’, RSC Advances, 13(36), pp. 25007–25017. Available at: https://doi.org/10.1039/d3ra04018f.
Martínez Márquez, M.A. (2021) ‘Realidades y retos en el uso de las TIC en educación, por la emergencia sanitaria provocada por el COVID-19’, Revista de Investigación en Tecnologías de la Información, 9(19), pp. 73–88. Available at: https://doi.org/10.36825/riti.09.19.006.
Moustafa, H. et al. (2021) ‘FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde’, Materials Science and Engineering C, 28(1), pp. 293–298. Available at: https://doi.org/10.1016/j.msec.2007.10.088.
Nevalaita, J. and Koskinen, P. (2018) ‘Atlas for the properties of elemental two-dimensional metals’, Physical Review B, 97(3), pp. 1–11. Available at: https://doi.org/10.1103/PhysRevB.97.035411.
Sabry, N., Mohammed, M.I. and Yahia, I.S. (2019) ‘Optical analysis, optical limiting and electrical properties of novel PbI2/PVA polymeric nanocomposite films for electronic optoelectronic applications’, Materials Research Express, 6(11). Available at: https://doi.org/10.1088/2053-1591/ab4c24.
Skoog, D.A., Holler, J.F. and Crouch, S.R. (2008) Principios de análsis instrumental, CENGAGE Learning.
Song, H.B. et al. (2018) ‘Lead iodide nanosheets for piezoelectric energy conversion and strain sensing’, Nano Energy, 49(April), pp. 7–13. Available at: https://doi.org/10.1016/j.nanoen.2018.04.029.
Wangyang, P. et al. (2016) ‘Mechanical exfoliation and Raman spectra of ultrathin PbI2 single crystal’, Materials Letters, 168, pp. 68–71. Available at: https://doi.org/10.1016/j.matlet.2016.01.034.
Yang, Y. et al. (2019) ‘Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response’, Nano Energy, 66(July), p. 104134. Available at: https://doi.org/10.1016/j.nanoen.2019.104134.
Yuan, W. et al. (2020) ‘Flexible and stretchable MXene/Polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process’, Composites Communications, 19(February), pp. 90–98. Available at: https://doi.org/10.1016/j.coco.2020.03.003.
Yuan, W. et al. (2021a) ‘MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors’, Chinese Chemical Letters [Preprint]. Available at: https://doi.org/10.1016/j.cclet.2020.12.003.
Yuan, W. et al. (2021b) ‘MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors’, Chinese Chemical Letters [Preprint]. Available at: https://doi.org/10.1016/j.cclet.2020.12.003.
Zheng, Y. et al. (2020) ‘Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin’, Chemical Engineering Journal, (August), p. 127720. Available at: https://doi.org/10.1016/j.cej.2020.127720.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)