Un método simple de solución para preparar precursores de VO2:Co2+ para la deposición de película delgada mediante el método de procesamiento en solución

Un método simple de solución para preparar películas delgadas de VO2:Co2+

Autores/as

  • F Hernandez-Guzman Department of Research in Polymers and Materials, University of Sonora
  • G Suarez Campos Department of Chemical Engineering and Metallurgy, University of Sonora, Hermosillo, Sonora, Mexico https://orcid.org/0000-0002-9193-1710
  • D Cabrera-German Department of Research in Polymers and Materials, University of Sonora https://orcid.org/0000-0001-8523-4671
  • MA Milan-Franco Institute of Renewable Energies, National Autonomous University of Mexico https://orcid.org/0000-0001-6104-3221
  • H Hu Institute of Renewable Energies, National Autonomous University of Mexico https://orcid.org/0000-0002-8256-7750
  • MA Quevedo-Lopez Department of Research in Polymers and Materials, Universidad de Sonora. Materials Science and Engineering Department, University of Texas at Dallas, , United States.
  • M Sotelo-Lerma Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora https://orcid.org/0000-0001-9995-8531

DOI:

https://doi.org/10.18633/biotecnia.v25i2.1886

Palabras clave:

oxido de vanadio dopado con cobalto, películas delgadas mediante recubrimiento centrifugo, morfología porosa, procesamiento de la solución sin complejantes.

Resumen

El procesamiento de soluciones es un método de bajo costo para preparar una variedad de películas delgadas orgánicas o inorgánicas. Para compuestos de óxidos metálicos, un procesamiento de solución de un compuesto organometálico se usa con frecuencia como solución precursora para ser recubierta por rotación, seguida de un tratamiento térmico para formar el óxido metálico. En este trabajo se obtienen polvos de óxido de vanadio a partir de una simple reacción ácido-base, y luego se dispersan en alcohol isopropílico para formar una solución para spin-coating. También se agregan diferentes cantidades de sal de cobalto junto con VOx en alcohol isopropílico para formar soluciones de VOx:Co2+. Después del tratamiento térmico a 200 °C, se obtienen películas delgadas transparentes. Se analizan las propiedades ópticas, estructurales, morfológicas y químicas. Se encontró que el compuesto VO2:Co2+ es amorfo y se obtiene con una relación atómica V:Co variada de 6.6:1-1.6:1. El material presenta una absorción óptica alrededor de 2.3 eV. Se observa una interesante morfología porosa interconectada cuando la relación atómica de V:Co es ~4.9:1. Se concluye que se pueden obtener películas delgadas amorfas porosas de VO2:Co2+ a partir del spin-coating a una baja temperatura de tratamiento utilizando una solución simple sin agente complejante.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

A. Herera-Gomez (no date) AAnalyzer a peak-fitting program for photoemission data. Available at: http://rdataa.com/aanalyzer/aanaHome.htm (Accessed: 18 April 2020).

Bae, J. W., Koo, B. R. and Ahn, H. J. (2019) ‘Fe doping effect of vanadium oxide films for enhanced switching electrochromic performances’, Ceramics International, 45(6), pp. 7137–7142. doi: 10.1016/j.ceramint.2018.12.219. DOI: https://doi.org/10.1016/j.ceramint.2018.12.219

Biesinger, M. C. et al. (2011) ‘Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni’, Applied Surface Science, 257(7), pp. 2717–2730. doi: 10.1016/j.apsusc.2010.10.051. DOI: https://doi.org/10.1016/j.apsusc.2010.10.051

Cabrera-German, D., Gomez-Sosa, G. and Herrera-Gomez, A. (2016) ‘Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al Kα radiation: I: cobalt spinel’, Surface and Interface Analysis, 48(5), pp. 252–256. doi: 10.1002/sia.5933. DOI: https://doi.org/10.1002/sia.5933

Channu, V. S. R. et al. (2011) ‘Electrochemical properties of polyaniline-modified sodium vanadate nanomaterials’, Applied Physics A: Materials Science and Processing, 104(2), pp. 707–711. doi: 10.1007/s00339-011-6325-0. DOI: https://doi.org/10.1007/s00339-011-6325-0

Fuentes-Ríos, J. L. et al. (2021) ‘Modulation of the Pb/Sn ratio in Pb1-xSnxS thin films synthesized by chemical solution deposition’, Materials Science in Semiconductor Processing, 136(July). doi: 10.1016/j.mssp.2021.106126. DOI: https://doi.org/10.1016/j.mssp.2021.106126

Geng, X. et al. (2022) ‘Tuning Phase Transition and Thermochromic Properties of Vanadium Dioxide Thin Films via Cobalt Doping’, ACS Applied Materials and Interfaces. doi: 10.1021/acsami.2c03113. DOI: https://doi.org/10.1021/acsami.2c03113

Hajzeri, M. et al. (2012) ‘Sol-gel vanadium oxide thin films for a flexible electronically conductive polymeric substrate’, Solar Energy Materials and Solar Cells, 99, pp. 62–72. doi: 10.1016/j.solmat.2011.03.041. DOI: https://doi.org/10.1016/j.solmat.2011.03.041

Ho, H. C. et al. (2019) ‘High quality thermochromic VO2 films prepared by magnetron sputtering using V2O5 target with in situ annealing’, Applied Surface Science, 495(July), p. 143436. doi: 10.1016/j.apsusc.2019.07.178. DOI: https://doi.org/10.1016/j.apsusc.2019.07.178

Hryha, E., Rutqvist, E. and Nyborg, L. (2012) ‘Stoichiometric vanadium oxides studied by XPS’, Surface and Interface Analysis, 44(8), pp. 1022–1025. doi: 10.1002/sia.3844. DOI: https://doi.org/10.1002/sia.3844

Hu, F. et al. (2017) ‘Synthesis and electrochemical performance of NaV6O15 microflowers for lithium and sodium ion batteries’, RSC Advances, 7(47), pp. 29481–29488. doi: 10.1039/c7ra04388k. DOI: https://doi.org/10.1039/C7RA04388K

Ji, C. et al. (2018) ‘High thermochromic performance of Fe/Mg co-doped VO2 thin films for smart window applications’, Journal of Materials Chemistry C, 6(24), pp. 6502–6509. doi: 10.1039/c8tc01111g. DOI: https://doi.org/10.1039/C8TC01111G

Khatibani, A. B., Abbasi, M. and Rozati, S. M. (2016) ‘Peculiarities of deposition times on gas sensing behaviour of vanadium oxide thin films’, Acta Physica Polonica A, 129(6), pp. 1245–1251. doi: 10.12693/APhysPolA.129.1245. DOI: https://doi.org/10.12693/APhysPolA.129.1245

Li, B. et al. (2019) ‘Tungsten doped M-phase VO2 mesoporous nanocrystals with enhanced comprehensive thermochromic properties for smart windows’, Ceramics International, 45(4), pp. 4342–4350. doi: 10.1016/j.ceramint.2018.11.109. DOI: https://doi.org/10.1016/j.ceramint.2018.11.109

Liu, S. et al. (2020) ‘One-step microwave-controlled synthesis of CoV2O6•2H2O nanosheet for super long cycle-life battery-type supercapacitor’, Electrochimica Acta, 364, p. 137320. doi: 10.1016/j.electacta.2020.137320. DOI: https://doi.org/10.1016/j.electacta.2020.137320

Lu, C. et al. (2019) ‘Terahertz Transmittance of Cobalt-Doped VO2 Thin Film: Investigated by Terahertz Spectroscopy and Effective Medium Theory’, IEEE Transactions on Terahertz Science and Technology, 9(2), pp. 177–185. doi: 10.1109/TTHZ.2019.2894516. DOI: https://doi.org/10.1109/TTHZ.2019.2894516

Mane, A. A. and Moholkar, A. V. (2017) ‘Effect of film thickness on NO 2 gas sensing properties of sprayed orthorhombic nanocrystalline V 2 O 5 thin films’, Applied Surface Science, 416(2), pp. 511–520. doi: 10.1016/j.apsusc.2017.04.097. DOI: https://doi.org/10.1016/j.apsusc.2017.04.097

Martínez-Gil, M. et al. (2020) ‘Effect of annealing temperature on the thermal transformation to cobalt oxide of thin films obtained via chemical solution deposition’, Materials Science in Semiconductor Processing, 107(October 2019). doi: 10.1016/j.mssp.2019.104825. DOI: https://doi.org/10.1016/j.mssp.2019.104825

Peng, B. et al. (2018) ‘Transparent AlON ceramic combined with VO2 thin film for infrared and terahertz smart window’, Ceramics International, 44(12), pp. 13674–13680. doi: 10.1016/j.ceramint.2018.04.205. DOI: https://doi.org/10.1016/j.ceramint.2018.04.205

Petnikota, S. et al. (2018) ‘Amorphous Vanadium Oxide Thin Films as Stable Performing Cathodes of Lithium and Sodium-Ion Batteries’, Nanoscale Research Letters, 13, pp. 1–13. doi: 10.1186/s11671-018-2766-0. DOI: https://doi.org/10.1186/s11671-018-2766-0

Sharma, G. P. et al. (2021) ‘Chalcogenide Dopant-Induced Lattice Expansion in Cobalt Vanadium Oxide Nanosheets for Enhanced Supercapacitor Performance’, ACS Applied Energy Materials, 4(5), pp. 4758–4771. doi: 10.1021/acsaem.1c00357. DOI: https://doi.org/10.1021/acsaem.1c00357

Shen, N. et al. (2021) ‘Vanadium dioxide for thermochromic smart windows in ambient conditions’, Materials Today Energy, 21, p. 100827. doi: 10.1016/j.mtener.2021.100827. DOI: https://doi.org/10.1016/j.mtener.2021.100827

Silversmit, G. et al. (2004) ‘Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+)’, Journal of Electron Spectroscopy and Related Phenomena, 135(2–3), pp. 167–175. doi: 10.1016/j.elspec.2004.03.004. DOI: https://doi.org/10.1016/j.elspec.2004.03.004

Silversmit, G. et al. (2006) ‘An XPS study on the surface reduction of V2O5(0 0 1) induced by Ar+ ion bombardment’, Surface Science, 600(17), pp. 3512–3517. doi: 10.1016/j.susc.2006.07.006. DOI: https://doi.org/10.1016/j.susc.2006.07.006

Tabatabai Yazdi, S., Pilevar Shahri, R. and Shafei, S. (2021) ‘First synthesis of In-doped vanadium pentoxide thin films and their structural, optical and electrical characterization’, Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 263(August 2020), p. 114755. doi: 10.1016/j.mseb.2020.114755. DOI: https://doi.org/10.1016/j.mseb.2020.114755

Wang, S. et al. (2011) ‘Three-dimensional porous V 2O 5 cathode with ultra high rate capability’, Energy and Environmental Science, 4(8), pp. 2854–2857. doi: 10.1039/c1ee01172c. DOI: https://doi.org/10.1039/c1ee01172c

Wang, S. et al. (2020) ‘Facile synthesis of VO2 (D) and its transformation to VO2(M) with enhanced thermochromic properties for smart windows’, Ceramics International, 46(10), pp. 14739–14746. doi: 10.1016/j.ceramint.2020.02.278. DOI: https://doi.org/10.1016/j.ceramint.2020.02.278

Xu, Y. et al. (2019) ‘Ammonium Vanadium Bronze as a Potassium-Ion Battery Cathode with High Rate Capability and Cyclability’, Small Methods, 3(8), pp. 1–9. doi: 10.1002/smtd.201800349. DOI: https://doi.org/10.1002/smtd.201800349

Yang, J. et al. (2010) ‘Synthesis and characterization of Cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs’, Journal of Physical Chemistry C, 114(1), pp. 111–119. doi: 10.1021/jp908548f. DOI: https://doi.org/10.1021/jp908548f

Yao, X. et al. (2018) ‘Cesium-Doped Vanadium Oxide as the Hole Extraction Layer for Efficient Perovskite Solar Cells’, ACS Omega, 3(1), pp. 1117–1125. doi: 10.1021/acsomega.7b01944. DOI: https://doi.org/10.1021/acsomega.7b01944

Yuan, L. et al. (2021) ‘In-Situ thermochromic mechanism of Spin-Coated VO2 film’, Applied Surface Science, 564(June), p. 150441. doi: 10.1016/j.apsusc.2021.150441. DOI: https://doi.org/10.1016/j.apsusc.2021.150441

Zhan, Y. et al. (2020) ‘Tuning thermochromic performance of VOx-based multilayer films by controlling annealing pressure’, Ceramics International, 46(2), pp. 2079–2085. doi: 10.1016/j.ceramint.2019.09.188. DOI: https://doi.org/10.1016/j.ceramint.2019.09.188

Zhou, X. et al. (2020) ‘Abnormal dependence of microstructures and electrical properties of Y-doped VO2 thin films on deposition temperature’, Ceramics International, 46(11), pp. 18315–18321. doi: 10.1016/j.ceramint.2020.05.053. DOI: https://doi.org/10.1016/j.ceramint.2020.05.053

Resumen gráfico

Archivos adicionales

Publicado

2023-05-23

Cómo citar

Hernandez-Guzman, F., Suarez Campos, G., Cabrera-German, D., Milan-Franco, M., Hu, H., Quevedo-Lopez, M., & Sotelo-Lerma, M. (2023). Un método simple de solución para preparar precursores de VO2:Co2+ para la deposición de película delgada mediante el método de procesamiento en solución: Un método simple de solución para preparar películas delgadas de VO2:Co2+. Biotecnia, 25(2), 146–152. https://doi.org/10.18633/biotecnia.v25i2.1886

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.