Synthesis and characterization of PbI2/PVA composite polymer films for optoelectronic applications

Authors

DOI:

https://doi.org/10.18633/biotecnia.v26.2441

Keywords:

Lead iodide, composite films, Chemical precipitation, Polyvinyl alcohol, optoelectronic

Abstract

Polyvinyl alcohol/lead iodide (PVA/PbI2) composite films were synthesized with varying concentrations of PbI2 using a low-temperature, cost-effective solvent evaporation process. The structural properties of the synthesized particles were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results revealed a predominantly crystalline nature, displaying reflection planes characteristic of the 2H polytype of lead iodide. SEM micrographs showed a hexagonal morphology with an average particle size of 13.2 µm. The optical properties of the composite films were measured using UV-Vis spectroscopy, indicating that the indirect energy band gap for pure PVA is 4.65 eV. In contrast, PVA/PbI2 films with 0.5, 1.0, 1.5, and 2.0 wt% PbI2 exhibited a direct transition of 5.16 eV and an indirect transition of 4.45 eV. The electrical resistance of the PVA film was measured at 4.318 × 107 Ω. Chemical analysis using Fourier-transform infrared (FTIR) spectroscopy showed that the addition of PbI2 particles did not alter the characteristic bands of PVA, suggesting no chemical bonding between the particles and the polymer matrix. The optical and electrical properties suggest that the PVA/PbI2 composite films are promising for various optoelectronic applications. 

Downloads

Download data is not yet available.

References

​​​Abdelaziz, M. (2011a) ‘Cerium (III) doping effects on optical and thermal properties of PVA films’, Physica B: Condensed Matter, 406(6–7), pp. 1300–1307. Available at: https://doi.org/10.1016/j.physb.2011.01.021.

​Abdelaziz, M. (2011b) ‘Cerium (III) doping effects on optical and thermal properties of PVA films’, Physica B: Condensed Matter, 406(6–7), pp. 1300–1307. Available at: https://doi.org/10.1016/j.physb.2011.01.021.

​Abdullah, O.G. et al. (2015) ‘Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite’, Journal of Materials Science: Materials in Electronics, 26(7), pp. 5303–5309. Available at: https://doi.org/10.1007/s10854-015-3067-3.

​Ali, H. (2019a) ‘The influence of yttrium-ions on the optical and electrical behavior of pva polymeric films’, Materials Research Express, 6(4). Available at: https://doi.org/10.1088/2053-1591/aafbee.

​Ali, H. (2019b) ‘The influence of yttrium-ions on the optical and electrical behavior of pva polymeric films’, Materials Research Express, 6(4). Available at: https://doi.org/10.1088/2053-1591/aafbee.

​Almohammedi, A. et al. (2020) ‘Elucidating the impact of PbI2 on photophysical and electrical properties of poly(3-hexythiophene)’, Materials Science in Semiconductor Processing, 120. Available at: https://doi.org/10.1016/j.mssp.2020.105272.

​Aslam, M., Kalyar, M.A. and Raza, Z.A. (2018) ‘Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites’, Polymer Engineering and Science, 58(12), pp. 2119–2132. Available at: https://doi.org/10.1002/pen.24855.

​Baibarac, M. et al. (2015) ‘Exciton-phonon interaction in PbI2 revealed by Raman and photoluminescence studies using excitation light overlapping the fundamental absorption edge’, Materials Research Bulletin, 70, pp. 762–772. Available at: https://doi.org/10.1016/j.materresbull.2015.06.012.

​Dong, Z. et al. (2019) ‘Raman characterization on two-dimensional materials-based thermoelectricity’, Molecules, 24(1). Available at: https://doi.org/10.3390/molecules24010088.

​El-Mongy, S.A., Mohammed, M.I. and Yahia, I.S. (2020) ‘Preparation and spectroscopic studies of PbI2-doped poly(methyl methacrylate) nanocomposites films: Dielectric and optical limiting approach’, Optical Materials, 100(December 2019), p. 109626. Available at: https://doi.org/10.1016/j.optmat.2019.109626.

​El-Zahhar, A.A. et al. (2022a) ‘Pronounced effect of PbI2 nanoparticles doping on optoelectronic properties of PVA films for photo-electronic applications’, Physica B: Condensed Matter, 630(November 2021), p. 413604. Available at: https://doi.org/10.1016/j.physb.2021.413604.

​El-Zahhar, A.A. et al. (2022b) ‘Pronounced effect of PbI2 nanoparticles doping on optoelectronic properties of PVA films for photo-electronic applications’, Physica B: Condensed Matter, 630(November 2021), p. 413604. Available at: https://doi.org/10.1016/j.physb.2021.413604.

​Ismail, R.A. et al. (2016) ‘Synthesis of PbI2 nanoparticles by laser ablation in methanol’, Journal of Materials Science: Materials in Electronics, 27(10), pp. 10696–10700. Available at: https://doi.org/10.1007/s10854-016-5169-y.

​Khairy, Y., Yahia, I.S. and Elhosiny Ali, H. (2020) ‘Facile synthesis, structure analysis and optical performance of manganese oxide-doped PVA nanocomposite for optoelectronic and optical cut-off laser devices’, Journal of Materials Science: Materials in Electronics, 31(10), pp. 8072–8085. Available at: https://doi.org/10.1007/s10854-020-03348-0.

​Li, M. et al. (2021) ‘Preparation, microstructure and tensile properties of two dimensional MXene reinforced copper matrix composites’, Materials Science and Engineering A, 803(December 2020), p. 140699. Available at: https://doi.org/10.1016/j.msea.2020.140699.

​Li, X. et al. (2021a) ‘Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-wide and tunable sensing range’, Composites Communications, 23(December 2020), p. 100586. Available at: https://doi.org/10.1016/j.coco.2020.100586.

​Li, X. et al. (2021b) ‘Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-wide and tunable sensing range’, Composites Communications, 23(December 2020), p. 100586. Available at: https://doi.org/10.1016/j.coco.2020.100586.

​Lima, A.F.S. et al. (2022) ‘Dilemas éticos durante la pandemia del covid-19’, Revista Bioética, 30(1), pp. 19–26. Available at: https://doi.org/10.1590/1983-80422022301502es.

​Liu, B., Zhang, J. and Guo, H. (2022) ‘Research Progress of Polyvinyl Alcohol Water-Resistant Film Materials’, Membranes. MDPI. Available at: https://doi.org/10.3390/membranes12030347.

​Malevu, T.D., Ocaya, R.O. and Tshabalala, K.G. (2016) ‘Phase transformations of high-purity PbI2 nanoparticles synthesized from lead-acid accumulator anodes’, Physica B: Condensed Matter, 496, pp. 69–73. Available at: https://doi.org/10.1016/j.physb.2016.05.027.

​Manh, D.H. et al. (2023) ‘Determination of the crystalline size of hexagonal La1−xSrxMnO3 (x = 0.3) nanoparticles from X-ray diffraction - a comparative study’, RSC Advances, 13(36), pp. 25007–25017. Available at: https://doi.org/10.1039/d3ra04018f.

​Martínez Márquez, M.A. (2021) ‘Realidades y retos en el uso de las TIC en educación, por la emergencia sanitaria provocada por el COVID-19’, Revista de Investigación en Tecnologías de la Información, 9(19), pp. 73–88. Available at: https://doi.org/10.36825/riti.09.19.006.

​Moustafa, H. et al. (2021) ‘FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde’, Materials Science and Engineering C, 28(1), pp. 293–298. Available at: https://doi.org/10.1016/j.msec.2007.10.088.

​Nevalaita, J. and Koskinen, P. (2018) ‘Atlas for the properties of elemental two-dimensional metals’, Physical Review B, 97(3), pp. 1–11. Available at: https://doi.org/10.1103/PhysRevB.97.035411.

​Sabry, N., Mohammed, M.I. and Yahia, I.S. (2019) ‘Optical analysis, optical limiting and electrical properties of novel PbI2/PVA polymeric nanocomposite films for electronic optoelectronic applications’, Materials Research Express, 6(11). Available at: https://doi.org/10.1088/2053-1591/ab4c24.

​Skoog, D.A., Holler, J.F. and Crouch, S.R. (2008) Principios de análsis instrumental, CENGAGE Learning.

​Song, H.B. et al. (2018) ‘Lead iodide nanosheets for piezoelectric energy conversion and strain sensing’, Nano Energy, 49(April), pp. 7–13. Available at: https://doi.org/10.1016/j.nanoen.2018.04.029.

​Wangyang, P. et al. (2016) ‘Mechanical exfoliation and Raman spectra of ultrathin PbI2 single crystal’, Materials Letters, 168, pp. 68–71. Available at: https://doi.org/10.1016/j.matlet.2016.01.034.

​Yang, Y. et al. (2019) ‘Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response’, Nano Energy, 66(July), p. 104134. Available at: https://doi.org/10.1016/j.nanoen.2019.104134.

​Yuan, W. et al. (2020) ‘Flexible and stretchable MXene/Polyurethane fabrics with delicate wrinkle structure design for effective electromagnetic interference shielding at a dynamic stretching process’, Composites Communications, 19(February), pp. 90–98. Available at: https://doi.org/10.1016/j.coco.2020.03.003.

​Yuan, W. et al. (2021a) ‘MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors’, Chinese Chemical Letters [Preprint]. Available at: https://doi.org/10.1016/j.cclet.2020.12.003.

​Yuan, W. et al. (2021b) ‘MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors’, Chinese Chemical Letters [Preprint]. Available at: https://doi.org/10.1016/j.cclet.2020.12.003.

​Zheng, Y. et al. (2020) ‘Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin’, Chemical Engineering Journal, (August), p. 127720. Available at: https://doi.org/10.1016/j.cej.2020.127720. ​

Published

2024-11-27

How to Cite

Maca Ossa, B., Solís Mosquera, J. J., Cabrera Germán, D., Suárez Campos, G., & Sotelo Lerma, M. (2024). Synthesis and characterization of PbI2/PVA composite polymer films for optoelectronic applications . Biotecnia, 26, e2441. https://doi.org/10.18633/biotecnia.v26.2441

Issue

Section

Research Articles

Metrics