Caracterización estructural y funcional de nanopartículas de ZnO-EPS sintetizadas a partir de exopolisacáridos producidos por Lactiplantibacillus fabifermentans BAL-27-ITTG
Nanopartículas de ZnO-EPS
DOI:
https://doi.org/10.18633/biotecnia.v25i3.1950Palabras clave:
Nanopartículas, micropartículas, ZnO, Lactiplantibacillus fabifermentans, ExopolisacáridosResumen
Los exopolisacáridos (EPS) pueden ser utilizados como agentes reductores confiriendo mejores propiedades físicas y químicas a las nanopartículas metálicas. Este estudio tuvo como objetivo sintetizar y evaluar las características fisicoquímicas, estructurales y funcionales de nanopartículas de ZnO producidas con EPS de Lactiplantibacillus fabifermentans BAL-27-ITTG. La caracterización estructural de los EPS exhibió una estructura de alto peso molecular compuesta principalmente de manosa y glucosa con enlaces α-1,4, α-1,3, α-1,6 de acuerdo al espectro de RMN. El aumento de la concentración de EPS en la síntesis provoca el incremento en el tamaño de las partículas en escala micrométrica disminuyendo el índice de polidispersidad. La síntesis de las nanopartículas se confirmó mediante un barrido espectral UV-vis y el espectro FT-IR mostró picos de absorción a 600 cm-1 asociados al enlace Zn-O. Las nano y micropartículas sintetizadas mostraron actividades funcionales mejoradas respecto al EPS libre. Los valores máximos en actividad antioxidante (80.25 %), capacidad de retención de agua (3.06 g H2O/g muestra), actividad emulsionante (69.85%) y actividad floculante (69.07 %) se obtuvieron con las MpZnO-EPS sintetizadas con 6 mg/mL del agente reductor. Se observó actividad bacteriostática contra Staphylococcus aureus y L. fabifermentans. El ensayo de biocompatibilidad confirmó la obtención de partículas no hemolíticas.
Descargas
Citas
Abinaya, M., Vaseeharan, B., Divya, M., Sharmili, A., Govindarajan, M., Alharbi, N. y Benelli, G. 2018. Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and zika virus vectors. Journal of Trace Elements in Medicine and Biology. 45: 93-103. doi.org/10.1016/j.jtemb.2017.10.002.
Adesulu-Dahunsi, A., Kumaraswamy, J. y Sanni, A. 2018. Production of exopolysaccharide by strains of Lactobacillus plantarum YO175 and OF101 isolated from traditional fermented cereal beverage. PeerJ Publishing. 6-10. doi: 10.7717/peerj.5326.
Alvarado, V. 2015. Evaluación del exopolisacárido producido por una bacteria psicrotolerante aislada del noreste de México y sus potenciales aplicaciones industriales. [Tesis de maestría, Universidad Au-tónoma de Nuevo León]. http://eprints.uanl.mx/id/eprint/9408.
Ates, O. 2015. Systems Biology of Microbial Exopolysaccharides Production. Frontiers in Bioengi-neering and Biotechnology. 3: 200. doi: 10.3389/fbioe.2015.00200.
Azim, A., Atta, A. y Khedr, M. 2018. Determination of intrinsic viscosity of polymeric compounds through a single specific viscosity measurement. Polymer. 39(26): 6827-6833. doi:10.1016/S0032- 3861(98)00184-0.
Aziz, A., Shaniba, V. y Jayasree, P. 2020. Physico-chemical, photocatalytic and cytotoxicity evaluation of Annona muricata L. fruit extract derived zinc oxide nanoparticles in comparison to the commercial chemical versión. Current Science. 117(9): 1492-1504. doi: 10.18520/cs/v117/i9/1492- 1504.
Bajpai, V., Kamle, M. y Sukla, S. 2018. Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis. 26(4): 1201-1214. doi.org/10.1016/j.jfda.2018.06.011.
Busi, S., Karuganti, S. y Pattnaik, S. 2016. Sludge settling and algal flocculating activity of extracellular polymeric substance (EPS) derived from Bacillus cereus SK. Water and Environment Journal. 31(1): 97- 104. https://doi.org/10.1111/wej.12215.
Chapot-Chartier, M. y Kulakauskas, S. 2014. Cell wall structure and function in lactic acid bacteria. Microbial Cell Factories. 13(1): S9. doi: 10.1186/1475-2859-13-S1-S9.
De Freitas, R. A., Nicolai, T., Chassenieux, C. y Benyahia, L. 2016. Stabilization of water-in-water emulsions by polysaccharide-coated protein particles. Langmuir. 32(5): 1227-1232. https://doi.org/10.1021/acs.langmuir.5b03761.
Dlamini, N., Basson, A. y Pullabhotla, V. 2019. Optimization and application of bioflocculant passivated copper nanoparticles in the wastewater treatment. International Journal of Environmental Research and Public Health. 16(12): 2185. https://doi.org/10.3390%2Fijerph16122185.
Estudillo-Diaz, E.B., Gutiérrez-Miceli, F.A., González-Mendoza, D., Valdez-Salas, B., y Abud-Archila, M. 2022. Desarrollo y caracterización de películas activas con nanopartículas de plata obtenidas mediante síntesis verde. Biotecnia, 25(1): 109–115. https://doi.org/10.18633/biotecnia.v25i1.1683.
Gutiérrez-Sarmiento, W., Ventura-Canseco, L. M. C., Gutiérrez-Miceli, F., Luján-Hidalgo, M. C., Ab-ud-Archila, M. y Ruíz-Valdiviezo, V. 2020. Optimization of biomass production, lactic acid, and gastrointestinal simulation survival of Lactobacillus plantarum BAL-03-ITTG cultured in stirred tank bioreactor. Agrociencia. 54:147-162.
Guo, M.Q., Hu, X., Wang, C., y Ai, L. 2017. Polysaccharides: Structure and Solubility. Solubility of Polysaccharides. doi: 10.5772/intechopen.71570.
Hayat, S., Ashraf, S., Zubair, M., Aslam B. y Muzammil. 2022. Biofabrication of ZnO nanoparticles using Acacia arabica leaf extract and their antibiofilm and antioxidant potential against foodborne pathogens. Plos One. 17(1): e0259190. https://doi.org/10.1371/journal.pone.0259190.
Ismail, B. y Nampoothiri, K. 2014. Molecular characterization of an exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510 and its efficacy to improve the texture of starchy food. Journal of Food Science and Technology. 51(12): 4012-8. https://doi.org/10.1007/s13197-013-0928-8.
Jay-Chithra, M., Sathya, M. y Pushpanathan, K. 2015. Effect of pH on crystal size and photolumines-cence property of ZnO nanoparticles prepared by chemical precipitation method. Acta Metallurgica Sinica, 28(3): 394–404. doi: 10.1007/s40195-015-0218-8.
Jayachandran, A. y Nair, A. 2021. Green synthesis and characterization of zinc oxide nanoparticles using Cayratia pedata leaf extract. Biochemistry and Biophysics Reports. 26. https://doi.org/10.1016/j.bbrep.2021.100995.
Jayawardena, B., Pandithavidana, D. y Sameera, W. 2017. Polysaccharides in solution: experimental and computational studies. INTECH. 4. doi: 10.5772/intechopen.69863.
Jiang, G., Gan, L., Li, X. y Tian, Y. 2021. Characterization of structural and physicochemical properties of an exopolysaccharide produced by Enterococcus sp. F2 from fermented soya beans. Frontiers in Microbiology. 12:744007. doi: 10.3389/fmicb.2021.744007.
Jin, J., Yang, Z., Xiong, W., Zhou, Y., Xu, R., Zhang, Y. y Zhou, C. 2019. Cu and Co nanoparticles co-doped MIL-101 as a novel adsorbent for efficient removal of tetracycline from aqueous solu-tions. Science of the Total Environment. 650(1): 408-418. https://doi.org/10.1016/j.scitotenv.2018.08.434.
Jo, D.H, Kim, J., Lee, T. y Kim, J. 2015. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine. 11(7): 1603-1611. doi: 10.1016/j.nano.2015.04.015.
Jurasková, D., Riveiro, S. y Silva, G. 2021. Exopolysaccharides produced by Lactic acid bacteria: from biosynthesis to health-promoting properties. Foods. 11(2):156. https://doi.org/10.3390/foods11020156.
Kavitake, D., Balyan, S. y Devi, P. 2020. Evaluation of oil-in-water (O/W) emulsifying properties of galactan exopolysaccharide from Weissella confusa KR780676. Journal of Food Science and Technology. 57(4): 1579-1585. https://doi.org/10.1007/s13197-020-04262-3.
Khan, S., Jabeen, F., Qureshi, A., Asghar, S. y Noureen, A. 2015. Toxicity of silver nanoparticles in fish: a critical review. Journal of Biodiversity and Environmental Sciences. 6(5): 211-227. https://www.researchgate.net/publication/280686023.
Leonia, M., Menezes, T., Souza, J. y Nágila, R. 2013. Structural characterization of β glucans isolated from Agaricus blazei murill using NMR and FTIR spectroscopy. Bioactive carbohydrates and die-tary fibre. 152-156. https://doi.org/10.1016/j.bcdf.2013.10.005.
Li, S., Huang, R., Shah, N. y Tao, X. 2014. Antioxidant and antibacterial activities of exopolysaccharides from Bifidobacterium bifidum WBIN03 and Lactobacillus plantarum R315. Journal of Dairy Sci-ence. 97(12): 7334-7343. https://doi.org/10.3168/jds.2014-7912.
Li, H., Wu, S., Du, C. y Zhong, Y. 2020. Preparation, performances, and mechanisms of microbial flocculants for wastewater treatment. International Journal of Environmental Research and Public Health, 17(4):1360. doi: 10.3390/ijerph17041360.
Lim, J., Yeap, S., Che, H. y Low, S. 2013. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Research Letters. 8: 381 http://www.nanoscalereslett.com/content/8/1/381.
Mahamuni, P., Patil, P. y Bohara, A. 2019. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochemistry and Biophysics Reports. 17: 71-80. https://doi.org/10.1016/j.bbrep.2018.11.007.
Murru, C. 2021. Potencial tecnológico de los puntos cuánticos de carbono antioxidantes: el impulso hacia metodologías verdes y nanotecnología sostenible. Tesis doctoral, Universidad de Oviedo España.
Njus, D., Kelley, P.M., Tu, Y.J. y Schlegel, H.B. 2020. Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radical Biology and Medicine. 159: 37-43. https://doi.org/10.1016/j.freeradbiomed.2020.07.013.
Salunke, G., Gosh, S., Kumar, R., Khade, S. y Kale, T. 2014. Rapid efficient synthesis and characteri-zation of silver, gold, and bimetallic nanoparticles from the medicinal plant plumbago zeylanica and their application in biofilm control. International Journal of Nanomedicine. 9: 2635-53. doi: 10.2147/IJN.S59834.
Sathiyanarayanan, G., Dineshkumar, K. y Yang, Y. 2017. Microbial exopolysaccharide-mediated syn-thesis and stabilization of metal nanoparticles. Critical Reviews in Microbiology. 43(6):731-752.
doi: 10.1080/1040841X.2017.1306689.
Seedevi, P., Moovendhan, M., Vairamani, S. y Shanmugam, A. 2015. Structural characterization and biomedical properties of sulfated polysaccharide from the gladius of Sepioteuthis lessoniana. In-ternational Journal of Biological Macromolecules. 85: 117-125. https://doi.org/10.1016/j.ijbiomac.2015.12.066.
Solorzano-Toalá, R., González-Mendoza, D., Valdez-Salas, B., Gutiérrez-Miceli, F. y Camacho, O. 2020. Synthesis of silver nanoparticles from Annona diversifolia Safford and their potential use as a green alternative to control of pathogenic microorganisms. Journal of Renewable Materials. 8(9), 1129-1137. https://doi.org/10.32604/jrm.2020.09845.
Soua L., Koubaa, M., Barba, F. y Fakhfakh, J. 2020. Water-soluble polysaccharides from ephedra alata stems: structural characterization, functional properties, and antioxidant activity. Molecules. 25(9), 2210. https://doi.org/10.3390/molecules25092210.
Suchomel, P., Kvitek, L., Pruceck, R. y Vajda S. 2018. Simple size-controlled synthesis of Au nano-particles and their size-dependent catalytic activity. Scientific Reports. 8: 4589. https://doi.org/10.1038/s41598-018-22976-5.
Patil, S., Patil, C., Salunke, B. y Bathe, G. 2011. Studies on characterization of bioflocculant exopoly-saccharide of Azotobacter indicus and its potential for wastewater treatment. Applied Biochemistry and Biotechnology. 163: 463-72. https://doi.org/10.1007/s12010-010-9054-5.
Trabelsi, M., Mamun, A., Sabantina L. y Ehrmann, A. 2019. Increased mechanical properties of carbon nanofiber mats for possible medical applications. Fibers. 7(11), 98; https://doi.org/10.3390/fib7110098.
Wel, C., Heinrich, D. y Kraft, D. 2017. Microparticle assembly pathways on lipid membranes. Bio-physical Journal. 113(5): 1037-1046. https://doi.org/10.1016/j.bpj.2017.07.019.
Yan, Y. y Ding, H. 2020. pH-responsive nanoparticles for cancer immunotherapy: a brief review. Na-nomaterials. 10(8): 1613; https://doi.org/10.3390/nano10081613.
Yilmaz, T. y Simsek, O. 2020. Potential health benefits of ropy exopolysaccharides produced by Lac-tobacillus plantarum. Molecules. 25(14): 3293. https://doi.org/10.3390/molecules25143293.
Zhang, Q., Wang, J., Sun, Q., Zhang, S. y Tang, J. 2021. Characterization and antioxidant activity of released exopolysaccharide from potential probiotic Leuconostoc mesenteroides LM187. Journal of Microbiology and Biotechnology. 31(8): 1144-1153. https://doi.org/10.4014/jmb.2103.03055.
Zheng, J., Sun, D., Li, X. y Liu, D. 2021. The effect of fatty acid chain length and saturation on the emulsification properties of pork myofibrillar proteins. LWT. 139: 110242. https://doi.org/10.1016/j.lwt.2020.110242.
Zisu, B. y Sha, N. 2003. Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. Journal of Dairy Science. 86(11): 3405-15. doi: 10.3168/jds.S0022-0302(03)73944-7.
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)