Aplicación foliar suplementaria de Boro, Manganeso y Molibdeno como inductores de crecimiento, rendimiento y concentración de fitoquímicos en el cultivo de tomate

Microelementos en Tomate Saladette

Autores/as

  • Mariana Isabel García-Terrazas Universidad Autónoma Agraria Antonio Narro image/svg+xml
  • Adalberto Benavides-Mendoza Universidad Autónoma Agraria Antonio Narro image/svg+xml
  • Susana González-Morales Universidad Autónoma Agraria Antonio Narro image/svg+xml
  • Julia Medrano-Macías Universidad Autónoma Agraria Antonio Narro
  • Marcelino Cabrera-De La Fuente Universidad Autónoma Agraria Antonio Narro

DOI:

https://doi.org/10.18633/biotecnia.v26.2052

Palabras clave:

nutrición, micronutrientes, rendimiento, crecimiento, fitoquímicos

Resumen

En el estudio se evaluó la aplicación foliar suplementaria de productos comerciales líquidos de B+3 (Basfoliar® con 13 % de B), Mn+2 (CRECITEC Mn® con 5 % de Mn) y Mo+6 (MOLIBION® con 9.2 % de Mo) sobre el rendimiento y fitoquímicos de tomate. Los tratamientos fueron: B+3 (1 mL L-1), Mn+2 (2 mL L-1), Mo+6 (1.5 mL L-1), sus interacciones (B+3+Mn+2, B+3+Mo+6, Mn+2+Mo+6 y B+3+Mn+2+Mo+6) y un testigo cada 15 d después del trasplante. Se utilizo un diseño de bloques completos al azar con ocho tratamientos y 10 repeticiones. Los tratamientos no modificaron el rendimiento, sin embargo, B+3+Mo+6 mejoró el diametro ecuatorial del fruto. Para altura de planta los tratamientos superaron al control a excepción de B+3 y Mn+2, y el número de hojas se incrementó con Mn+2 y Mo+6. El tratamiento de Mo+6 aumentó el peso seco total. En fruto, Mn incrementó las proteínas, B+3+Mo+6 y Mn+2 +Mo+6 disminuyeron los fenoles, B+3, Mo+6 y Mn+2+Mo+6 aumentaron los flavonoides y B+3+Mn+6 y Mn+3+Mo+6 disminuyeron el glutatión. B+3+Mo+6 incrementó licopeno, pero disminuyó el β-caroteno. Para capacidad antioxidante lipofílica, B+3+Mn+2 la incrementó y B+3+Mo+6 la disminuyó. La aplicación suplementaria de estos microelementos es adecuada para incrementar fitoquímicos en cultivos, sin afectar rendimientos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alejandro, S., Höller, S., Meier, B. and Peiter, E. 2020. Manganese in plants: from acquisition to sub-cellular allocation. Frontiers in Plant Science. 11: 300. https://doi.org/10.3389/fpls.2020.00300

Ali, M.R., Mehraj, H. and Jamal Uddin, A.F.M. 2015. Effects of foliar application of zinc and boron on growth and yield of summer tomato. Journal of Bioscience and Agriculture Research. 6: 512-517. https://doi.org/10.18801/jbar.060115.61

Bai, Y., Sunarti, S., Kissoudis, C., Visser, R.G. and Van der Linden, C. 2018. The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses. Frontiers in Plant Sci-ence. 9: 801. https://doi.org/10.3389/fpls.2018.00801

Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of pro-tein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-254. https://doi.org/10.1016/j.cj.2017.04.003

Brand-Williams, W., Cuvelier, M.E. and Berset, C.L.W.T. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology. 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Chaudhary, P., Sharma, A., Singh, B. and Nagpal, A.K. 2018. Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology. 55: 2833-2849. https://doi.org/10.1007/s13197-018-3221-z

Çolak, N.G., Eken, N.T., Ülger, M., Frary, A. and Doğanlar, S. 2020. Mapping of quantitative trait loci for antioxidant molecules in tomato fruit: Carotenoids, vitamins C and E, glutathione and phenolic acids. Plant Science. 292: 110393. https://doi.org/10.1016/j.plantsci.2019.110393

Ghafarian, A.H., Zarghami, R., Zand, B. and Bayat, V. 2013. Wheat performance as affected by foliar application of molybdenum (Mo) under drought stress condition. International Journal of Agronomy and Plant Production. 4: 3050-3056.

Giménez, G., Andriolo, J. L., Janisch, D. and Godoi, R. 2008. Closed soilless growing system for pro-ducing strawberry bare root transplants and runner tips. Pesquisa Agropecuária Brasileira. 43: 1757–1761.

Gupta, U. and Solanki, H. 2013. Impact of boron deficiency on plant growth. International Journal of Bioassays. 2: 1048-1050.

Gutiérrez-Gamboa, G., Garde-Cerdán, T., Souza-Da Costa, B. and Moreno-Simunovic, Y. 2018. Strategies for the improvement of fruit set in Vitis vinifera L. cv. ‘Carménère’ through different foliar biostimulants in two different locations. Ciência e Técnica Vitivinícola. 33: 177-183. https://doi.org/10.1051/ctv/20183302177

Hamouda, H.A., Khalifa, R.K.M., El-Dahshouri, M.F. and Zahran, N.G. 2016. Yield, fruit quality and nutrients content of pomegranate leaves and fruit as influenced by iron, manganese and zinc foliar spray. International Journal of Pharm Tech Research. 9: 46-57.

Islam, M.Z., Mele, M.A., Ki-Young, C.H.O.I. and Ho-Min, K.A.N.G. 2018. The effect of silicon and boron foliar application on the quality and shelf life of cherry toma-toes. Zemdirbyste-Agriculture. 105: 159-164. https://doi.org/10.13080/z-a.2018.105.020

Karim, M.R., Zhang, Y.Q., Zhao, R.R., Chen, X.P., Zhang, F.S. and Zou, C.Q. 2012. Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. Journal of Plant Nutrition and Soil Science. 175: 142-151. https://doi.org/10.1002/jpln.201100141

Kollist, H., Zandalinas, S.I., Sengupta, S., Nuhkat, M., Kangasjärvi, J. and Mittler, R. 2019. Rapid re-sponses to abiotic stress: priming the landscape for the signal transduction network. Trends in Plant Science. 24: 25-37. https://doi.org/10.1016/j.tplants.2018.10.003

Li, Y., Kong, D., Fu, Y., Sussman, M.R. and Wu, H. 2020. The effect of developmental and environ-mental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemis-try. 148: 80-89. https://doi.org/10.1016/j.plaphy.2020.01.006

Lynch, J.H. and Dudareva, N. 2020. Aromatic amino acids: A complex network ripe for future explora-tion. Trends in Plant Science. 25: 670-681. https://doi.org/10.1016/j.tplants.2020.02.005

Nagata, M. and Yamashita, I. 1992. Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaishi. 39: 925-928. https://doi.org/10.3136/nskkk1962.39.925

Priadkina, G.O. 2020. Influence of trace elements, applied in classical and nano forms, on photosynthesis of higher plants in relation to enhancement of crop productivity. Agricultural Science and Prac-tice. 7: 71-85. https://doi.org/10.15407/agrisp7.03.071

Rana, M., Bhantana, P., Sun, X.C., Imran, M., Shaaban, M., Moussa, M., Saleem, M., Elyamine, A., Binyamin, R., Alam, M., Afzal, J., Khan, I., Din, I., Ahmad, I., Younas, M., Kamran, M. and Hu, C.X. 2020. Molybdenum as an essential element for crops: an overview. Biomedical Journal of Scientific & Technical Research. 24:18535. https://doi.org/10.26717/BJSTR.2020.24.004104

Rodrigues, V.A., Crusciol, C.A.C., Bossolani, J.W., Moretti, L.G., Portugal, J.R., Mundt, T.T., de Oliveira, S.L., Garcia, A., Calonego, J.C. and Lollato, R.P. 2021. Magnesium foliar supplementa-tion increases grain yield of soybean and maize by improving photosynthetic carbon metabolism and antioxidant metabolism. Plants. 10: 797. https://doi.org/10.3390/plants10040797

Salehi, B., Sharifi-Rad, R., Sharopov, F., Namiesnik, J., Roointan, A., Kamle, M., Kumar, P., Martins, N. and Sharifi-Rad, J. 2019. Beneficial effects and potential risks of tomato consumption for hu-man health: An overview. Nutrition. 62: 201-208. https://doi.org/10.1016/J.NUT.2019.01.012

Sánchez, E., Ruiz, J.M., Romero, L., Preciado-Rangel, P., Flores-Córdova, M.A. y Márquez-Quiroz, C. 2018. ¿Son los pigmentos fotosintéticos buenos indicadores de la relación del nitrógeno, fósforo y potasio en frijol ejotero? Ecosistemas y Recursos Agropecuarios. 5: 387-398. https://doi.org/10.19136/era.a5n15.1757

Sariñana-Aldaco, O., Sanchez-Chavez, E., Fortis-Hernandez, M., González-Fuentes, J.A., Moreno-Resendez, A., Rojas-Duarte, A. and Preciado-Rangel, P. 2020. Improvement of the nutraceutical quality and yield of tomato by application of salicylic acid. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 48: 882-892. https://doi.org/10.15835/nbha48211914

Sarmadi, M., Karimi, N., Palazón, J., Ghassempour, A. and Mirjalili, M.H. 2018. The effects of salicylic acid and glucose on biochemical traits and taxane production in a Taxus baccata callus cul-ture. Plant Physiology and Biochemistry. 132: 271-280. https://doi.org/10.1016/j.plaphy.2018.09.013

Schmidt, S.B. and Husted, S. 2019. The biochemical properties of manganese in plants. Plants. 8: 381. https://doi.org/10.3390/plants8100381

Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymolo-gy. 299: 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1

Steiner, A.A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil. 15: 134–154. https://doi.org/10.1007/BF01347224

Steiner, F., Zoz, T., Zuffo, A.M., Pereira-Machado, P., Zoz, J. and Zoz, A. 2018. Foliar application of molybdenum enhanced quality and yield of crispleaf lettuce (Lactuca sativa L., cv. Grand Rap-ids). Acta Agronómica. 67: 73-78. https://doi.org/10.15446/acag.v67n1.59272

Sutulienė, R., Ragelienė, L., Duchovskis, P. and Miliauskienė, J. 2022. The Effects of Nano-copper,-molybdenum,-boron, and-silica on Pea (Pisum sativum L.) Growth, Antioxidant Properties, and Mineral Uptake. Journal of Soil Science and Plant Nutrition. 22: 801-814. https://doi.org/10.1007/s42729-021-00692-w

Wenda-Piesik, A., Kazek, M. and Ropińska, P. 2017. Impact of amino acid biostimulation and micro-elements fertilization in foliar application on productivity of winter oilseed rape. Fragmenta Ag-ronomica. 34: 119-129.

Westermann, D.T. 2005. Nutritional requirements of potatoes. American Journal of Potato Research. 82: 301-307. https://doi.org/10.1007/BF02871960

Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q. and Cai, Y. 2019. The roles of environmental factors in regulation of oxidative stress in plant. BioMed Research International. 2019: 1-11. https://doi.org/10.1155/2019/9732325

Xue, T., Hartikainen, H. and Piironen, V. 2001. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil. 237: 55-61. https://doi.org/10.1023/A:1013369804867

Zhishen, J., Mengcheng, T. and Jianming, W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry. 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Descargas

Publicado

2024-05-09

Cómo citar

García-Terrazas , M. I., Benavides-Mendoza , A., González-Morales, S., Medrano-Macías , J., & Cabrera-De La Fuente , M. (2024). Aplicación foliar suplementaria de Boro, Manganeso y Molibdeno como inductores de crecimiento, rendimiento y concentración de fitoquímicos en el cultivo de tomate: Microelementos en Tomate Saladette. Biotecnia, 26, e2052. https://doi.org/10.18633/biotecnia.v26.2052

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.