Efecto de enmiendas minerales sobre el contenido mineral y antioxidantes en frutos de frambuesa//Effect of mineral amendments on raspberry fruits mineral content and antioxidants

Autores/as

  • José Antonio González-Fuentes Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo Coahuila México, CP 25315 https://orcid.org/0000-0002-8740-3931
  • Daniela Jiménez-López Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo Coahuila México, CP 25315 https://orcid.org/0000-0003-0133-8604
  • Alberto Sandoval-Rangel Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo Coahuila México, CP 25315
  • Armando Hernández-Perez Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo Coahuila México, CP 25315 https://orcid.org/0000-0001-9182-618X
  • Julia Medrano-Macías Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo Coahuila México, CP 25315 https://orcid.org/0000-0003-3585-3575
  • Pablo Preciado-Rangel Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Torreón Coahuila México, CP 27054 https://orcid.org/0000-0002-3450-4739

DOI:

https://doi.org/10.18633/biotecnia.v22i1.1124

Palabras clave:

Cultivo sin suelo, nutracéutico, antioxidantes

Resumen

Con el propósito de que plantas de frambuesa cultivadas en sustrato de peat moss y perlita, adquirieran una mayor cantidad de nutrientes minerales de los que comúnmente obtienen de una solución nutritiva completa en cultivo sin suelo, aquí se reporta el efecto de enriquecer el medio de crecimiento (sustrato) con diferentes moliendas de rocas minerales ricas en nutrientes (roca fosfórica, riolita, diatomita, dolomita, zeolita y harina de basalto) de las cuales se aplicaron 15 g por tratamiento a cada planta de frambuesa (Rubus ideaus L.) variedad fx1522. Con las aplicaciones de las diferentes rocas molidas se incrementó en frutos el contenido mineral de K, P, Ca, Mg, S, y Cu en 27, 27, 42, 33 y 44 %, respectivamente. Con respecto a la actividad enzimática de la catalasa se encontró que con riolita, diatomita y zeolita aumentaron en 54, 45 y 34 % respectivamente comparados con el testigo. La actividad de superóxido dismutasa y el contenido de vitamina C no se vieron afectadas por los tratamientos. El tratamiento con zeolita incrementó los compuestos fenólicos en un 23 %.

ABSTRACT

In order for raspberry plants cultivated in an inert growing medium of peat moss and perlite acquire a greater amount of mineral nutrients than they commonly obtain from a complete nutrient solution in soilless culture, here we report the effect of amending the soilless growing medium with different ground mineral rocks (mills) rich in nutrients (phosphate rock, rhyolite, diatomite, dolomite, zeolite and basalt flour) of which 15 g were applied per treatment to each raspberry plant (Rubus ideaus L.) variety fx1522. The applications of different ground rocks increased the fruits K, P, Ca, Mg, S, and Cu mineral contents by 27, 27, 42, 33 and 44 %, respectively. Regarding the CAT enzymatic activity, it was found that the treatments with riolite, diatomite and zeolite increased 54, 45 and 34 % respectively when compared against the control plants. Superoxide dismutase activity and vitamin C content were not altered by the treatments. The treatment with zeolite increased the phenolic compounds by 23%.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdalla, M. M. 2010. Sustainable effects of diatomite on the growth criteria and phytochemical contents of Vicia faba plants. Agriculture and Biology Journal of North America. 1: 1076–1089.

Abdi, G., Khosh-Khui, M., y Eshghi, S. (2006). Effects of Natural Zeolite on Growth and Flowering of Strawberry (fragaria x ananassa Duch.). International Journal of Agricultural Research. 1: 384–389.

Agatonovic-Kustrin, S., y Morton, D.W. 2016. Determination of free phenolic acids in plant-derived foods by high-performance thin-layer chromatography with direct 2,2′-diphenyl-1-picrylhydrazyl assay. JPC Journal of Planar Chromatography Modern. 29: 121–126.

Aksakal, E. L., Angin, I., y Oztas, T. 2012. Effects of diatomite on soil physical properties. Catena. 88: 1–5.

AOAC. 2000. Official Methods of Analysis. 17th ed. Gaithersburg, MD. USA: Association of official analytical chemistry.

Baker, A.V. y Pilbeam, D. J. 2015. Handbook of plant nutrition (CRC press).

Brooks, O. y Velásquez, G. 2008. Cinética De Liberación Del Fósforo En Roca Fosfórica. Revista Cubana de Química. 203: 13–16.

Cao, X., Ma, L. Q., Rhue, D. R., y Appel, C. S. 2004. Mechanisms of lead, copper, and zinc retention by phosphate rock. 131: 435–444.

Carlino, J.L., Williams, K.A., y Allen, E.R. 1998. Evaluation of Zeolite-based soilless root media for potted chrysanthemum production. Hort. Tech. 8: 373–378.

Debona, D., Rodrigues, F.A. y Datnoff, L.E. 2017. Silicon’s role in abiotic and biotic plant stresses. Annu. Rev. Phytopathol. 55: 85–107

Etesami, H. 2018. Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agriculture, Ecosystems and Environment. 253: 98–112.

Farruggia, D., Crescimanno, M., Galati, A. y Tinervia, S. 2016. The Quality Perception of Fresh Berries: An Empirical Survey in the German Market. Agriculture and Agricultural Science Procedia. 8: 566–575.

Fick, K.R., Miller, S.M., Funk, J., McDowell, L.R. y Houser, R.H. 1976. Methods of mineral analysis for plant and animal tissues. Plant Physiology. 15: 121-130.

Fredes, C. 2009. Antioxidantes en berries nativos chilenos. Boletín Latinoamericano y Del Caribe de Plantas Medicinales y Aromáticas. 8: 469–478.

García, M., Daverede, C., Gallego, P. y Toumi, M. 1999. Effect of various potassium-calcium ratios on cation nutrition of grape grown hydroponically. Journal of Plant Nutrition. 22: 417–425.

Gill, S.S. y Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48: 909–930.

Gillman, G.P., Burkett, D.C., y Coventry, R.J. 2002. Amending highly weathered soils with finely ground basalt rock. Applied Geochemistry. 17: 987–1001.

Guo, J., Li, Y., Hu, C., Zhou, S., Xu, H., Zhang, Q., y Wang, G. 2018. Ca-containing amendments to reduce the absorption and translocation of Pb in rice plants. Science of the Total Environment. 12: 971–979.

Hernández-Ávila, J., Salinas-Rodríguez, E., Cerecedo-Sáenz, E., Reyes-Valderrama, M., Arenas-Flores, A., Román-Gutiérrez, A. y Rodríguez-Lugo, V. 2017. Diatoms and Their Capability for Heavy Metal Removal by Cationic Exchange. Metals. 7: 169.

Hinsinger, P., Fernandes Barros, O. N., Benedetti, M. F., Noack, Y., y Callot, G. 2001. Plant-induced weathering of a basaltic rock: Experimental evidence. Geochimica et Cosmochimica Acta. 65: 137–152.

Imadi, S.R., Waseem, S., Kazi, A.G., Azooz, M.M. y Ahmad, P. 2016. Aluminum Toxicity in Plants. In Plant Metal Interaction. 107: 31 5–321

Inglesazakis, V.J. y Zorpas, A. A. 2012. Hand Book Zeolites (Bentham Sc).

Izawa, S., Inou, Y. and Kimura, A. 1996. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Biochem. J. 15: 61–67.

Juárez, C., Rodríguez, M. y Sandoval, M. 2007. Comparación de tres sistemas de producción de fresa en invernadero. Terra Latinoamericana. 25: 17–23.

Kolyagin, Y.S. y Kucgerenko, S.P. 2003. Yield and long-term effect fertilizers. Sakharnaya-Svekla. 3: 17–18.

Malekian, R., Abedi-Koupai, J., y Eslamian, S. S. 2011. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. Journal of Hazardous Materials. 185: 970–976.

Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2nd edn. Academic Press. London.

Martín-Hernández, C., Ordaz-Chaparro, V. M., Sánchez-García, P., Colinas-León, M. T. B., y Borges-Gómez, L. 2012. Tomato (Solanum lycopersicum L.) quality produced in hydroponics with different particle sizes of tezontle. Agrociencia: 46: 243–254.

Mditshwa, A., Magwaza, L.S., Tesfay, S.Z. y Opara, U.L. 2017. Postharvest factors affecting vitamin C content of citrus fruits: A review. Scientia Horticulturae. 218: 95–104.

Medrano-Macías, J., Leija-Martínez, P., Juárez-Maldonado, A., Rocha-Estrada, A. y Benavides-Mendoza, A. 2016. Efecto de la aplicación de yodo sobre antioxidantes en plántulas de jitomate. Revista Chapingo Serie Horticultura. 22: 133–143.

Mhamdi, A., Noctor, G. y Baker, A. 2012. Plant catalases: Peroxisomal redox guardians. Archives of Biochemistry and Biophysics: 525: 181–194.

Mumpton, F. A. 1999. Mineralogy and Geology of Natural Zeolite. University of New York, USA.

Noriega, G., Cárcamo, B., Gómez, Á., Schwentesius, R., Cruz, S., Leyva, J. y Martínez Hernández, A. 2014. Intensificación de la producción en la agricultura orgánica: caso café. Revista Mexicana de Ciencias Agrícolas. 5: 163–169.

Nuñez, E. R., y Gavi, R. 1991. Avances de las investigaciones sobre la aplicación directa de roca fosfórica en México. Rev. Fac. Agronomía. 17: 197–216.

Padayatt, S. J., Daruwala, R., Wang, Y., Eck, P. K., Song, J., Koh, W. S. y Levine, M. 2001. Vitamin C: from molecular actions to optimum intake: Handbook of Antioxidants. 2nd ed., Cardenas E., Packer, L. Eds. Washington DC, USA. 117–145.

Pérez-Caballero, R., Gil, J., Benitez, C. y Gonzalez, J. L. 2008. The Effect of Adding Zeolite to Soils in Order to Improve the N-K Nutrition of Olive Trees. American Journal of Agricultural and Biological Sciences. 2: 321–324.

Premuzic, Z., Bargiela, M., Garcia, A., Rendina, A., y Iorio, A. 1998. Calcium, iron, potassium, phosphorus, and vitamin C content of organic and hydroponic tomatoes. HortScience. 33: 255–257.

Ramos, S. J., Faquin, V., Guilherme, L. R. G., Castro, E. M., Ávila, F. W., Carvalho, G. S., Bastos, C.E.A. y Oliveira, C. 2010. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ, 56: 584–588.

Rechcigl, J. E. 2015. Effect of dolomite and sowing rate on plant density, yield and nutritive value of Paspalum atratum. Tropical Grasslands. 32: 89–95.

Roy, A. K., Sharma, A., y Talukder, G. 1988. Some aspects of aluminum toxicity in plants. Botanical Review. 54: 145–178.

Savvas, D., y Ntatsi, G. 2015. Bio stimulant activity of silicon in horticulture. Scientia Horticulturae. 196: 66–81.

SIGMA-ALDRICH. 2014. 19160 SOD determination kit. Retrieved.

Sparks, D. L. 2003. Environmental Soil Chemistry. 2nd. Academic Press. San Diego.

Steiner, A. A. 1961. A Universal Method for Preparing Nutrient Solutions of a Certain Desired Composition. Plant and Soil. 15: 134–154.

Sultana, B., Anwar, F., y Ashraf, M. 2009. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules. 14: 2167–2180.

Teng, H., Fang, T., Lin, Q., Song, H., Liu, B., y Chen, L. 2017. Trends in Food Science & Technology Red raspberry and its anthocyanins: Bioactivity beyond antioxidant capacity. Trends in Food Science & Technology. 66:153–165.

Tipping, E., Thompson, D. W., Ohnstad, M., y Hetherington, N. B. 1986. Effect of pH on the release of metals from naturally-occurring oxides of Fe and Mn. Environmental Technology Letters 7: 109–114.

Treftz, C., y Omaye, S. T. 2015. Nutrient Analysis of Soil and Soilless Strawberries and Raspberries Grown in a Greenhouse. Food and Nutrition Sciences. 6: 805–815.

Yamamoto, Y., Kobayashi, Y., Devi, S. R., Rikiishi, S., y Matsumoto, H. 2002. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol. 128: 63–72.

Descargas

Publicado

2019-10-18

Cómo citar

González-Fuentes, J. A., Jiménez-López, D., Sandoval-Rangel, A., Hernández-Perez, A., Medrano-Macías, J., & Preciado-Rangel, P. (2019). Efecto de enmiendas minerales sobre el contenido mineral y antioxidantes en frutos de frambuesa//Effect of mineral amendments on raspberry fruits mineral content and antioxidants. Biotecnia, 22(1), 48–55. https://doi.org/10.18633/biotecnia.v22i1.1124

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.