Potencial de Verrucodesmus verrucosus en la remoción de estructuras de nitrógeno y fósforo de aguas residuales de granjas porcinas

Autores/as

  • Ana Gabriela Zenteno Carballo Universidad de Ciencias y Artes de Chiapas
  • Yazmin Sánchez Roque Universidad Politécnica de Chiapas
  • Sergio Saldaña Trinidad Universidad Politécnica de Chiapas
  • Miguel Angel Canseco Pérez Universidad Politécnica de Chiapas
  • Roberto Berrones Hernández Universidad Politécnica de Chiapas
  • Yolanda del Carmen Pérez Luna Universidad Politécnica de Chiapas

DOI:

https://doi.org/10.18633/biotecnia.v26.2197

Palabras clave:

biomasa, eliminación máxima, mixotrófico, aguas residuales

Resumen

En la presente investigación se evaluó el potencial de biorremediación de la especie de microalga Verrucodesmus verrucosus en aguas residuales de una granja porcina ubicada en Suchiapa, Chiapas, México, como medio de cultivo mixotrófico. La evaluación se realizó durante 40 días, bajo el ciclo 12:12 luz/oscuridad, se evaluaron dos etapas de crecimiento (lechón y engorde) y la mezcla 50:50 de estos, así también al agua residual se le realizaron dos pretratamientos, estos consistieron en un proceso de filtración mediante un filtro de nylon de 15 µm de diámetro y un proceso de esterilización. Se demostró que la especie de microalgas Verrucodesmus verrucosus tiene potencial de biorremediación al crecer en aguas residuales y producir biomasa, demostrando una alta eficiencia en la eliminación de contaminantes. La máxima remoción de la Demanda Química de Oxígeno (DQO) fue en el tratamiento Ps (lechón estéril) donde se alcanzó la remoción del 96,8 %, mientras que la Demanda Bioquímica de Oxígeno (DBO) tuvo una remoción máxima del 96,7 % en el tratamiento Pf (lechón filtrado). Se demostró la remoción de nitrógeno total, amoniaco y nitrato con un porcentaje de 85.5 %, 74 % y 91 % respectivamente. En cuanto a la remoción máxima de fósforo y fosfato, alcanzan valores de 97.9 % y 82 % respectivamente. Por otro lado, se pudo demostrar la capacidad antagónica de esta microalga con respecto a Escherichia coli, donde se logró el 100 % de eliminación.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Azam, R., Kothari, R., Singh, H. M., Ahmad, S., Ashokkumar, V., & Tyagi, V. V. (2020). Production of algal biomass for its biochemical profile using slaughterhouse wastewater for treatment under axenic conditions. Bioresource technology, 306, 123116. doi: https://doi.org/10.1016/j.biortech.2020.123116 DOI: https://doi.org/10.1016/j.biortech.2020.123116

Bibbal, D., Um, M. M., Diallo, A. A., Kérourédan, M., Dupouy, V., Toutain, P. L., ... & Brugère, H. (2018). Mixing of Shiga toxin-producing and enteropathogenic Escherichia coli in a wastewater treat-ment plant receiving city and slaughterhouse wastewater. International Journal of Hygiene and Envi-ronmental Health, 221(2), 355-363. doi: https://doi.org/10.1016/j.ijheh.2017.12.009 DOI: https://doi.org/10.1016/j.ijheh.2017.12.009

Banach, J. L., van Overbeek, L. S., Groot, M. N., Van der Zouwen, P. S., & Van der Fels-Klerx, H. J. (2018). Efficacy of chlorine dioxide on Escherichia coli inactivation during pilot-scale fresh-cut lettuce processing. International journal of food microbiology, 269, 128-136. doi: https://doi.org/10.1016/j.ijfoodmicro.2018.01.013 DOI: https://doi.org/10.1016/j.ijfoodmicro.2018.01.013

Cai, X. B., Yu, Q. Q., Liu, R., Zhao, Y., & Chen, L. J. (2017). Cultivation of Spirulina platensis in Digest-ed Piggery Wastewater Pretreated by SBR with Operating Conditions Optimization. Huan Jing ke Xue= Huanjing Kexue, 38(7), 2910-2916. doi: https://doi.org/10.13227/j.hjkx.201612168

Chen, C. Y., Kuo, E. W., Nagarajan, D., Ho, S. H., Dong, C. D., Lee, D. J., & Chang, J. S. (2020). Culti-vating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresource technology, 302, 122814. doi: https://doi.org/10.1016/j.biortech.2020.122814 DOI: https://doi.org/10.1016/j.biortech.2020.122814

Chen, J., Yang, Y., Liu, Y., Tang, M., Wang, R., Hu, H., ... & Zhang, X. (2020). Effects caused by chlor-tetracycline and oxytetracycline in anaerobic digestion treatment of real piggery wastewater: treatment efficiency and bacterial diversity. International Journal of Hydrogen Energy, 45(15), 9222-9230. doi: https://doi.org/10.1016/j.ijhydene.2020.01.138 DOI: https://doi.org/10.1016/j.ijhydene.2020.01.138

Cheng, D. L., Ngo, H. H., Guo, W. S., Chang, S. W., Nguyen, D. D., & Kumar, S. M. (2019). Microalgae biomass from swine wastewater and its conversion to bioenergy. Bioresource technology, 275, 109-122. doi: https://doi.org/10.1016/j.biortech.2018.12.019 DOI: https://doi.org/10.1016/j.biortech.2018.12.019

Cheng, H. H., Narindri, B., Chu, H., & Whang, L. M. (2020). Recent advancement on biological technolo-gies and strategies for resource recovery from swine wastewater. Bioresource technology, 303, 122861. doi: https://doi.org/10.1016/j.biortech.2020.122861 DOI: https://doi.org/10.1016/j.biortech.2020.122861

Chen, Z., Shao, S., He, Y., Luo, Q., Zheng, M., Zheng, M., ... & Wang, M. (2020). Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Des-modesmus sp. PW1. Bioresource technology, 302, 122806. doi: https://doi.org/10.1016/j.biortech.2020.122806 DOI: https://doi.org/10.1016/j.biortech.2020.122806

Feng, C., Welles, L., Zhang, X., Pronk, M., de Graaff, D., & van Loosdrecht, M. (2020). Stress-induced assays for polyphosphate quantification by uncoupling acetic acid uptake and anaerobic phosphorus release. Water research, 169, 115228. doi: https://doi.org/10.1016/j.watres.2019.115228 DOI: https://doi.org/10.1016/j.watres.2019.115228

García, D., Posadas, E., Blanco, S., Acién, G., García-Encina, P., Bolado, S., & Muñoz, R. (2018). Evalua-tion of the dynamics of microalgae population structure and process performance during piggery wastewater treatment in algal-bacterial photobioreactors. Bioresource Technology, 248, 120-126. doi: https://doi.org/10.1016/j.biortech.2017.06.079 DOI: https://doi.org/10.1016/j.biortech.2017.06.079

Hegewald, E., Bock, C., & Krienitz, L. (2013). A phylogenetic study on Scenedesmaceae with the descrip-tion of a new species of Pectinodesmus and the new genera Verrucodesmus and Chodatodesmus (Chlorophyta, Chlorophyceae). Fottea, 13(2), 149-164. DOI: https://doi.org/10.5507/fot.2013.013

Jin, Y., Lin, Y., Wang, P., Jin, R., Gao, M., Wang, Q., ... & Ma, H. (2019). Volatile fatty acids production from saccharification residue from food waste ethanol fermentation: effect of pH and microbial com-munity. Bioresource technology, 292, 121957. doi: https://doi.org/10.1016/j.biortech.2019.121957 DOI: https://doi.org/10.1016/j.biortech.2019.121957

Kiel LW, Huaypo L, San Nicolas L, Lake Y, Bali LBL, Dngskär T, Omapera L, GenBank number.

Li, X., Yang, W. L., He, H., Wu, S., Zhou, Q., Yang, C., ... & Lou, W. (2018). Responses of microalgae Coelastrella sp. to stress of cupric ions in treatment of anaerobically digested swine wastewater. Bioresource technology, 251, 274-279. doi: https://doi.org/10.1016/j.biortech.2017.12.058 DOI: https://doi.org/10.1016/j.biortech.2017.12.058

López-Mendoza Z, Tavera R, Novelo E (2015) El fitoplancton de un canal de Xochimilco y la importancia de estudiar ecosistemas acuáticos urbanos. TIP Revista especializada en ciencias quimico-biológicas 18(1): 13-28. DOI: https://doi.org/10.1016/j.recqb.2015.05.002

Lu, W., Alam, M. A., Liu, S., Xu, J., & Saldivar, R. P. (2020). Critical processes and variables in microal-gae biomass production coupled with bioremediation of nutrients and CO2 from livestock farms: A re-view. Science of the Total Environment, 716, 135247. doi: https://doi.org/10.1016/j.scitotenv.2019.135247 DOI: https://doi.org/10.1016/j.scitotenv.2019.135247

Li, X., Liu, C., Chen, Y., Huang, H., & Ren, T. (2018). Antibiotic residues in liquid manure from swine feedlot and their effects on nearby groundwater in regions of North China. Environmental Science and Pollution Research, 25, 11565-11575. doi: https://doi.org/10.1007/s11356-018-1339-1 DOI: https://doi.org/10.1007/s11356-018-1339-1

Likiliki, C., Convers, B., & Béline, F. (2020). Dataset on the characteristics of the liquid effluent issued from separation of faeces and urine under slats using V-shaped scraper in swine buildings. Data in Brief, 30, 105533. doi: https://doi.org/10.1016/j.dib.2020.105533 DOI: https://doi.org/10.1016/j.dib.2020.105533

Nagarajan, D., Kusmayadi, A., Yen, H. W., Dong, C. D., Lee, D. J., & Chang, J. S. (2019). Current ad-vances in biological swine wastewater treatment using microalgae-based processes. Bioresource tech-nology, 289, 121718. doi: https://doi.org/10.1016/j.biortech.2019.121718 DOI: https://doi.org/10.1016/j.biortech.2019.121718

NMX-AA-034-SCFI-2015. Water analisys – measurement of salts and solids dissolved in natural water, wastewaters and treated wastewaters - Test method

NMX-AA-008-SCFI-2011. Water Analysis - pH Determination - Test Method - (Cancels NMX-AA-008- SCFI-2000).

NMX-AA-030/1-SCFI-2012. Water analysis - Determination of the chemical oxygen demand, in natural waters, wastewaters and treated wastewaters - test method - part 1 – Opened reflux method.

NMX-AA-028-SCFI-2000. Water analisys - Determination of the biochemical oxygen demand in natural, wastewaters (bod5) and wastewaters treated - Test method.

NMX-AA-42-1987. Water quality determination of the most likely number (MPN) of total coliforms, fecal coliforms (thermotolerants) and presumptive Escherichia coli.

Pei, H., Yang, Z., Nie, C., Hou, Q., Zhang, L., Wang, Y., & Zhang, S. (2018). Using a tubular photosyn-thetic microbial fuel cell to treat anaerobically digested effluent from kitchen waste: Mechanisms of or-ganics and ammonium removal. Bioresource technology, 256, 11-16. doi: https://doi.org/10.1016/j.biortech.2018.01.144 DOI: https://doi.org/10.1016/j.biortech.2018.01.144

Rasoul-Amini, S., Montazeri-Najafabady, N., Shaker, S., Safari, A., Kazemi, A., Mousavi, P., ... & Ghasemi, Y. (2014). Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system. Biocatalysis and Agricultural Biotechnology, 3(2), 126-131. doi: https://doi.org/10.1016/j.bcab.2013.09.003 DOI: https://doi.org/10.1016/j.bcab.2013.09.003

Sánchez-Roque, Y., Luna, Y. P., Acosta, J. M., Vázquez, N. F., Sebastian, J. P., & Hernández, R. B. (2020). Optimization for the production of verrucodesmus verrucosus biomass through crops in auto-trophic and mixotrophic conditions with potential for the production of biodiesel. Revista Mexicana de Ingeniería Química, 19(1), 133-147. doi: https://doi.org/10.24275/rmiq/Bio463 DOI: https://doi.org/10.24275/rmiq/Bio463

Sánchez-Zurano, A., Gomez-Serrano, C., Acién-Fernández, F. G., Fernández-Sevilla, J. M., & Molina-Grima, E. (2020). A novel photo-respirometry method to characterize consortia in microal-gae-related wastewater treatment processes. Algal Research, 47, 101858. doi: https://doi.org/10.1016/j.algal.2020.101858 DOI: https://doi.org/10.1016/j.algal.2020.101858

Savin, M., Bierbaum, G., Hammerl, J. A., Heinemann, C., Parcina, M., Sib, E., ... & Kreyenschmidt, J. (2020). Antibiotic-resistant bacteria and antimicrobial residues in wastewater and process water from German pig slaughterhouses and their receiving municipal wastewater treatment plants. Science of The Total Environment, 727, 138788. doi: https://doi.org/10.1016/j.scitotenv.2020.138788 DOI: https://doi.org/10.1016/j.scitotenv.2020.138788

Stafilov, T., Špirić, Z., Glad, M., Barandovski, L., Bačeva Andonovska, K., Šajn, R., & Antonić, O. (2020). Study of nitrogen pollution in the Republic of North Macedonia by moss biomonitoring and Kjeldahl method. Journal of Environmental Science and Health, Part A, 55(6), 759-764. doi: https://doi.org/10.1080/10934529.2020.1738825 DOI: https://doi.org/10.1080/10934529.2020.1738825

Sudiarto, S. I. A., Renggaman, A., & Choi, H. L. (2019). Floating aquatic plants for total nitrogen and phosphorus removal from treated swine wastewater and their biomass characteristics. Journal of envi-ronmental management, 231, 763-769. doi: https://doi.org/10.1016/j.jenvman.2018.10.070 DOI: https://doi.org/10.1016/j.jenvman.2018.10.070

Wang, M., Yang, Y., Chen, Z., Chen, Y., Wen, Y., & Chen, B. (2016). Removal of nutrients from undi-luted anaerobically treated piggery wastewater by improved microalgae. Bioresource Technology, 222, 130-138. doi: https://doi.org/10.1016/j.biortech.2016.09.128 DOI: https://doi.org/10.1016/j.biortech.2016.09.128

Wang, M., Kuo-Dahab, W. C., Dolan, S., & Park, C. (2014). Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresource technology, 154, 131-137. doi: https://doi.org/10.1016/j.biortech.2013.12.047 DOI: https://doi.org/10.1016/j.biortech.2013.12.047

Jin, W. A. N. G., Ye, H. A. N., ZHAO, J. Z., ZHOU, Z. J., & Huan, F. A. N. (2017). Consuming fer-mented distillers' dried grains with solubles (DDGS) feed reveals a shift in the faecal microbiota of growing and fattening pigs using 454 pyrosequencing. Journal of integrative agriculture, 16(4), 900-910. doi: https://doi.org/10.1016/S2095-3119(16)61523-X DOI: https://doi.org/10.1016/S2095-3119(16)61523-X

Wilfert, P., Dugulan, A. I., Goubitz, K., Korving, L., Witkamp, G. J., & Van Loosdrecht, M. C. M. (2018). Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery. Water research, 144, 312-321. doi: https://doi.org/10.1016/j.watres.2018.07.020 DOI: https://doi.org/10.1016/j.watres.2018.07.020

Wen, Y., He, Y., Ji, X., Li, S., Chen, L., Zhou, Y., ... & Chen, B. (2017). Isolation of an indigenous Chlo-rella vulgaris from swine wastewater and characterization of its nutrient removal ability in undiluted sewage. Bioresource technology, 243, 247-253. doi: https://doi.org/10.1016/j.biortech.2017.06.094 DOI: https://doi.org/10.1016/j.biortech.2017.06.094

Wu, W., Cheng, L. C., & Chang, J. S. (2020). Environmental life cycle comparisons of pig farming inte-grated with anaerobic digestion and algae-based wastewater treatment. Journal of environmental man-agement, 264, 110512. doi: https://doi.org/10.1016/j.jenvman.2020.110512 DOI: https://doi.org/10.1016/j.jenvman.2020.110512

Yang, Y., Xing, S., Li, S., Niu, Y., Li, C., Huang, T., & Liao, X. (2020). Potential regulation of small RNAs on bacterial function activities in pig farm wastewater treatment plants. Journal of Environmen-tal Sciences, 91, 292-300. doi: https://doi.org/10.1016/j.jes.2020.02.014 DOI: https://doi.org/10.1016/j.jes.2020.02.014

Zhou, W., Wang, Z., Xu, J., & Ma, L. (2018). Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. Journal of bioscience and bioengineering, 126(5), 644-648. doi: https://doi.org/10.1016/j.jbiosc.2018.05.006 DOI: https://doi.org/10.1016/j.jbiosc.2018.05.006

Zhu, G., Peng, Y., Li, B., Guo, J., Yang, Q., & Wang, S. (2008). Biological removal of nitrogen from wastewater. Reviews of environmental contamination and toxicology, 159-195. doi:https://doi.org/10.1007/978-0-387-71724-1_5 DOI: https://doi.org/10.1007/978-0-387-71724-1_5

Publicado

2024-05-02

Cómo citar

Zenteno Carballo, A. G., Sánchez Roque, Y., Saldaña Trinidad, S., Canseco Pérez, M. A., Berrones Hernández, R., & Pérez Luna, Y. del C. (2024). Potencial de Verrucodesmus verrucosus en la remoción de estructuras de nitrógeno y fósforo de aguas residuales de granjas porcinas. Biotecnia, 26, 283–292. https://doi.org/10.18633/biotecnia.v26.2197

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.