USO DE MICROORGANISMOS EN EL CULTIVO DE CRUSTÁCEOS
DOI:
https://doi.org/10.18633/bt.v16i3.141Keywords:
Acuicultura, bioflóculos, biopelículas, consorcios microbianos, bioremediación.Abstract
El presente documento es una revisión actualizada sobre el uso de microorganismos en acuicultura que incluye experiencias internacionales, nacionales, regionales e institucionales sobre el tema. Los microorganismos han sido ampliamente utilizados desde hace siglos en diversos procesos para la preparación y procesamiento de diversos alimentos (pan, queso, vino, cerveza, etcétera). Sus usos en acuicultura son relativamente recientes y han sido mayormente utilizados como prebióticos o probióticos para mejorar la calidad del ambiente de cultivo, así como la condición fisiológica, nutricional y sanitaria de los organismos cultivados. Recientemente se les ha encontrado aplicación práctica e importante como biomasa directa para alimentar a camarones y peces bajo condiciones de cultivo. En la revisión fueron destacados aspectos, como la composición nutricional de diversos microorganismos autotróficos y heterotróficos, las estrategias para su manejo y las experiencias de su uso en la acuicultura de diversas especies.Downloads
References
Alavandi, S.V., Vijayan, K.K., Santiago, T.C., Poornima, M., Jithendran, K.P., Ali, S.A. y Rajan, J.J.S., 2004. Evaluation of Pseudomonas sp. PM11 and Vibrio fluviales PM17 on immune indices of tiger shrimp, Penaeus monodon. Fish and Shellfish Immunology. 17:115–120.
Amon, R.M.W. y Benner, R. 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnology and Oceanography, 41:41–51.
Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Adhikary, R.K., Rahman, S.M.S.. y Azim, M.E. 2010. Effects of carbohydrate source for maintaining a high C:N ratio and fish driven resuspension on pond ecology and production in periphytonbased freshwater prawn culture systems. Aquaculture. 301:37–46.
Audelo-Naranjo, J.M., Martínez-Córdova, L.R. y Voltolina, D. 2010. Nitrogen budget in intensive cultures of Litopenaeus vannamei in mesocosms, with zero water exchange and artificial substrates. Revista de Biología Marina y Oceanografía. 45: 519–524.
Audelo-Naranjo, J.M., Martínez-Córdova, L.R., Voltolina, D. y Gómez Jiménez, S. 2011. Water quality, production parameters and nutritional condition of Litopenaeus vannamei (Boone, 1931) grown intensively in zero water exchange mesocosms with artificial substrates. Aquaculture Research. 42: 1371–1377.
Avnimelech, Y. 1999. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture. 176:227-235.
Avnimelech, Y. 2009. Biofloc technology - A practical guide book. The World Aquaculture Society. Baton Rouge, Louisiana, United States. 182 p.
Azim, M.E. y Little, D.C. 2008The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture. 283: 29–35.
Balcazar, J.L., de Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D. y Muzquiz, J.L. 2006. The role of probiotics in aquaculture. Veterinary Microbiology. 114:173–186.
Becerra-Dorame, M.J., Martínez-Córdova, L.R., López-Elías, J.A. y Martínez-Porchas, M. 2011. Evaluation of autotrophic and heterotrophic microcosm-based systems on the production response of Litopenaeus vannamei intensively nursed without Artemia and with zero water exchange. Israeli Journal of Aquaculture-Bamidgeh, IIC 63: 620.
Becerra-Dorame, M.J., Martínez-Porchas, M., Martínez-Córdova, L.R., Rivas-Vega, M.E., López-Elías, J.A. y Porchas-Cornejo, M.A. 2012. Production response and digestive enzymatic activity of the Pacific white shrimp, Litopenaeus vannamei (Boone 1931) intensively pre-grown in autotrophic and heterotrophic microbial based-systems. The Scientific World Journal. 2012:723654
Biddanda, B.A., Ogdahl, M.L. y Cotner, J.B. 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnology and Oceanography, 46:730–9.
Blackburn, S. 2004. Water Pollution and Bioremediation by Microalgae: Eutrophication and Water Poisoning. Pages 417429 In: Richmond A. (Ed.). Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science, Oxford, U.K. 566 pp.
Brown, M. R. 2002. Nutritional value of microalgae for aquculture. In: Cruz-Suárez, L. E., Ricque-Marie, D., TapiaSalazar, M., Gaxiola-Cortés, M. G. y Simoes, N. (Eds.). Avances en Nutrición Acuícola VI. Memorias del VI Simposium Internacional de Nutrición Acuícola. 3 al 6 de Septiembre del 2002. Cancún, Quintana Roo, México.
Campa-Córdova, A.I., Luna-González, A., Mazón-Suastegui, J.M., Aguirre-Guzmán, G. Ascencio, F. y González-Ocampo, H.A. 2011. Efecto de bacterias probióticas en el cultivo larvario del ostión de placer Crassostrea corteziensis (Bivalvia: Ostreidae). Revista de Biología Tropical. 59:183-191.
Chávez-Crooker, P. y Obreque-Contreras, J. 2010. Bioremediation of aquaculture wastes. Current Opinion in Biotechnology. 21:313-317.
Chiu, S. Y., Kao, C. Y., Huang, T. T., Lin, C. J., Ong, S. C., Chen, C. D. y Lin, C. S. 2011. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresource Technology. 102:9135-9142.
Cotner, J.B., Johengen, T.H. y Biddanda, B.A. 2000. Intense winter heterotrophic production stimulated by benthic resuspension. Limnology and Oceanography. 45:1672–6.
Cotner, J.B. y Biddanda, B.A. 2002. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems. 5: 105–121.
Das, S., Ward, L.R. y Burke, C. 2008. Prospects of using marine actinobacteria as probiotics in aquaculture. Applied Microbiology and Biotechnology. 81:419-429.
Doshi, H., Ray, A. y Kothari, I. L. 2007 Bioremediation potential of live and dead Spirulina: Spectroscopic, kinetics and SEM studies. Biotechnology and Bioengineering. 96:1051-1063.
Ebeling, J. M., Timmons, M. B. y Bisogni, J. J. 2006 Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia– nitrogen in aquaculture systems. Aquaculture. 257:346-358.
Ekasari, J., Angela, D., Waluyo, S. H., Bachtiar, T., Surawidjaja, E. H., Bossier, P. y De Schryver, P. 2014. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture. 246-247:105- 111.
Emerenciano, M., Ballester, E.L.C., Cavalli, R.O. y Wasielesky, W. 2012. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille, 1817). Aquaculture Research. 43:447–457.
Fiencke, C., Spieck, E. y Bock, E. 2005 Nitrifying bacteria. In: Werner, D. y Newton, W.E. (eds.). Nitrogen Fixation in Agriculture, Forestry, Ecology, and the Environment. Springer. 255-276.
Gatesoupe, F.J. 2007. Live yeasts in the gut: Natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture. 267:20-30.
Gomez-Gil, B., Roque, A. y Turnbull, J.F. 2000. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture. 191:259–270.
Gómez-Gil, B., Roque, A. y Velasco-Blanco, G. 2002. Culture of Vibrio alginolyticus C7b, a potential probiotic bacterium, with the microalga Chaetoceros muelleri. Aquaculture. 211:43–48.
González, L.E., Cañizares, R.O. y Baena, S. 1997. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresource Technology. 60:259–262.
Hemaiswarya, S., Raja, R., Kumar, R. R., Ganesan, V. y Anbazhagan, C. 2011. Microalgae: a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology. 27:1737-1746.
Hoffmann, J.P. 2002. Wastewater treatment with suspended and nonsuspended algae. Journal of Phycology. 34:757–763.
Horowitz, S. y Horowitz, A. 2002. Microbial intervention in Aquaculture. In: Lee, C.S. y O’Brien, P. (eds) Microbial Approaches to Aquatic Nutrition within Environmentally Sound Aquaculture Production Systems, pp. 119–129. The World Aquaculture Society, Baton Rouge, LA, Chap. 9.
Jackson, C., Preston, N., Thompson, P. J. y Burford, M. 2003 Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture. 218:397-411.
Koops, H. P. y Pommerening-Roser, A. 2001 Distribution and ecophysiology of nitrifying bacteria emphasizing cultured species. FEMS Microbiolology and Ecology. 1255:1-9.
Kwon, H. K., Oh, S. J. y Yang, H. S. 2013 Growth and uptake kinetics of nitrate and phosphate by benthic microalgae for phytoremediation of eutrophic coastal sediments. Bioresource Technology. En prensa.
Lara-Flores, M., Olvera-Novoa, M.A., Guzmán-Méndez, B. y LópezMadrid, W. 2003. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture. 216:193–201.
Lim, S. L., Chu, W. L. y Phang, S. M. 2010. Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology. 101:7314-7322.
López-Tarín, F. 2011. Efecto de la sustitución parcial de una dieta comercial complementada con floc en el crecimiento y la sobrevivencia de camarón blanco Litopenaeus vannamei en un sistema intensivo con cero recambio de agua. Tesis de Maestría. CESUES, México, 60 pp.
Maicá, P.F., Borba, M.R. y Wasielesky, W. 2012 Effect of low salinity on microbial floc composition and performance of Litopenaeus vannamei (Boone) juveniles reared in a zero-water exchange super-intensive system. Aquaculture Research. 43:361–370.
Martínez-Córdova, L.R., López-Elías, J.A., Leyva-Miranda J.G., Armenta Ayón, L. y Martínez-Porchas, M. 2011. Bioremediation and reuse of shrimp aquaculture effluents to farm white leg shirmp, Litopenaeus vannamei: A first approach. Aquaculture Research. 42:1415-1423.
Martínez-Córdova, L.R. Emerenciano, M., Miranda-Baeza, A. y Martínez Porchas, M. 2014. Microbial-based systems for aquaculture of fish and shrimp: an updated review. Reviews in Aquaculture. 6:1-8.
Mridula, R.M., Manissery, J.K., Keshavanath, P., Shankar, K.M., Nandeesha, M.C. y Rajesh, K.M. 2003. Water quality, biofilm production and growth of fringe-lipped carp (Labeo fimbriatus) in tanks provided with two solid substrates. Bioresource Technology. 87:263-267.
Neori, A., Chopin, T., Troell, M., Buschmann, A. H., Kraemer, G. P., Halling, C., Shipgel, M. y Yarish, C. 2004 Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231:361-391.
Paniagua-Michel, J. y Garcia, O. 2003 Ex-situ bioremediation of shrimp culture effluent using constructed microbial mats. Aquaculture Engineering. 28:131-139.
Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S. y Rengasamy, R. 2008 A perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology. 34:77-88.
Rivkin, R.B. y Legendre, L. 2001. Biogenic carbon cycling in the upper ocean: effects of microbial respiration. Science. 291:2398–400.
Samocha, T.M., Patnaik, S., Speed, M., Ali, A.M., Burger, J.M., Almeida, R.V., Ayub, Z., Harisanto, M., Horowitz, A. y Brock, D.L. 2007. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacultural Engineering. 36:184 191.
Sánchez, I.A., Revelo, D.M., Burbano, A.E., García, R. y Guerrero, C. 2013. Eficiencia de consorcios microbianos para tratamiento de aguas residuales en un sistema de recirculación acuícola. Biotecnología en el Sector Agropecuario y Agroindustrial. 11:245–254.
Wilde, E.W. y Benemann, J.R. 1993. Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances. 11:781– 812.
Yamashita, T., Yamamoto-Ikemoto, R., y Zhu, J. 2011. Sulfatereducing bacteria in a denitrification reactor packed with wood as a carbon source. Bioresource Technology. 102:2235–2241.
Downloads
Published
How to Cite
Issue
Section
License
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.