Characterization hydrodynamic of model the Green and Ampt in a soil with organic improvers
DOI:
https://doi.org/10.18633/biotecnia.v24i3.1627Keywords:
Organic amendment, infiltration, moisture retention, mathematical modelingAbstract
In agriculture, water efficiency and balance of supply and demand in crops are essentials. The lack of knowledge in the infiltration process in gravity irrigation increases in high-demand crops such as corn, sorghum and beans. Knowing the moisture retention in agricultural soils is important to satisfy the demand in agriculture. The purpose of this research was to study the hydrodynamic movement of water in eight treatments, mixed homogeneously, with organic additives and agricultural soil (clay loam), analyzing benefits in gravity irrigation (irrigation interval). Infiltration (F) was analyzed with the Green and Ampt model; Direct and indirect physical properties were evaluated, such as the volumetric water content at saturation (θS) and capillary pressure against wetting (ψf), humidity tension curve, the second parameter applying the Brooks and Corey method, and hydraulic conductivity ( Ks). The results are variable in relation to the control, organic improvers increased moisture retention by 30% and the irrigation interval increased by six days. The increase in moisture retention and accumulated infiltration, were obtained with organic material (T2) and organic material (T7), and obtained in corn harvest residues.
Downloads
References
Ali, S., islam, A., Mishra, P. K. y Sitka, A. K. 2016. Green and Ampt approximations: A comprehensive analysis. Journal of
Hydrology. 535: 340-355.
Barry, D. A., Parlance, J. Y., Li, L., Jing, D. S. y Crapper, M. 2005. Green and Ampt approximations. Advances in Water
Resources. 28(10): 1003-1009.
Binayak, P. M. 1999. Scaling hydraulic properties of a macroporous soil. Water Resources Research. 35(6): 1927-1931.
Blaney, H. F. y Criddle, W. D. 1950. Determining water requirements in irrigated areas from climatological and irrigation data. 48va ed. Soil Conservation Service. Washington, D.C, U. S. A. Brooks, R. H. y Corey, A. T. 1964. Hydraulic properties of porous media. En: Hydrology and Water Resources Program. Royal Harvard (ed.). pp. 27. Colorado State University.
Clarenc, A. R., Castellanos-Hernández, O. A., Rodríguez-Sahagún, A. y Acevedo-Hernández, G. J. 2020. Effect of saline stress
on the morphology and phytochemistry of in vitro grown Mexican oregano (Lippia grave lens Knuth). Biotecnia. 22(3):
-137.
CONAGUA (Comisión Nacional Del Agua), 2020. Estadísticas agrícolas de hidrométrica producción en México. http://
www.edistritos.com/DR/estadisticaAgricola/cultivo.php.
Corey, A.T. y Brooks R. H. 2009. The Brooks-Corey relationships. In Van Genuchten MT, Leij FJ, Wu L (Eds.) Proc. Int. Workshop on characterization and measurement of the hydraulic properties of unsaturated porous media. Riverside. 1: 13-18.
Deng, P. y Zhu, J. 2016. Analysis of effective Green and Ampt hydraulic parameters for vertically layered soils. Journal of
Hydrology. 538: 705-712.
Green, W.H., y Ampt, G. 1911. Study in soil physics. I. The flow of air and water through soils. Jurnal of Agriculture Science.
:1-24.
Habili, M. J., y Heidarpour, M. 2015. Application of the Green and Ampt model for infiltration into layered soils. Journal of
Hydrology. 527: 824-832.
Heano, E. C. 2012. Extracción y caracterización de pectinas de cáscara de plátanos, Tesis Doctoral. Universidad de
Colombia.
Hernández, M. V. 2012. Caracterización de aditivos carbonáceos para extracción de fluoruros del agua con materiales
orgánicos aplicando pirolisis. Journal of Hydrology. 2: 23-25.
Jintao, L., Jiabao, Z. y Jie, F. 2008. Green and Ampt model for layered soils with non-uniform initial water content under
unsteady infiltration. Soil Science Society of America Journal. 72(4): 1041-1047.
Kostiakov, A. 1932. On the dynamics of the coefficient of water percolation in soils and on the necessity for studying it
from a dynamic point of view for purposes of amelioration. International Society of Soil Science. 6: 17-21.
Li, Y., Kinzelbach, W. y Zhou, J., C. 2012. Modelling irrigated maize with a combination of coupled-model simulation and
uncertainty analysis, in the northwest of China. Hydrology and Earth System Sciences. 15: 1465-1480.
Machiwal, D., Jha, M.K. y Mal, B.C. 2006. Modelling infiltrationand quantifying spatial soil variability in a wasteland of
kharagpur, India. Biosystems Engineering. 95: 569-82.
Mao, L., Li Y., Hao W., Zhou X. y Xu C. L. T. 2016. A new methodto estimate soil water infiltration based on a modified Green
and Ampt model. Soil and Tillage Research. 161: 31-37.
Mendeley Support Team. Getting Started with Mendeley [Internet]. Mendeley Desktop. 11: 1-16. [8 Jun 2011] Disponible en: http://www.mendeley.com
Mehmet, Kucukmehmetoglu, A. G. 2014. The significance and impacts of large investments over the determination of
irrigated agricultural land use: The case of the Euphrates and Tigris river basin. Land Use Policy. 53: 514–52.
Moret, F. y Latorre. 2016. Estimate of the soil water retention curve from the sorptivity and parameter calculated from an
upward infiltration experiment. Journal of Hydrology. 22: 95-98.
Muñoz-Carpena, R. y Gowdish, L. 2005. Aplicación del método de infiltración de Green and Ampt con redistribución de
humedad del suelo entre encharcamientos. Vll Jornada de investigación en zonas no saturada del suelo. 205-213.
Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R. y King, K.W. 2002. Soil and water assessment tool theoretical
documentation. Texas Water Resources Institute. 191: 123- 234.
Opatokun, S. A. 2017. Agronomic assessment of pyrolysed food waste digestate for sandy. Journal of Environmental
Management. 187: 24-30.
Prado Hernández, J. V., Pascual Ramírez, F., Cristóbal Acevedo, D., Carrillo García, M., Hernández Saucedo, F. R. y Martínez Ruíz, A. 2017. Evaluation of Green and Ampt infiltration equation in some agricultural soils in México, using USDA information and a modified method from Brooks and Corey. Interciencia. 42(9): 563-569.
Core Team, R. 2018. R: A language and environment for statistical computing. R Foundation for statistical computing. Vienna. Austria. Avaliable online at https://www.R-proyect.org/.
Rao, M.D., Raghuwanshi, N.S. y Singh, R. 2009. Development of a physically based 1D- infiltration model for seal formed
irrigated soils. Agricultural Water Mananagent. 85: 165-174.
Rawls, W. J., Brakensiek, D. L., y Saxton, K. E. 1982. Estimation of soil water properties. Transaction of the ASAE: 1316-1328.
Silva-Rodríguez, D., Beltrán-Guilarte, Y., Ángulo-Mercado, E. R. y Quilodrán-Toloza, B. H. 2021. Comparative study
of the production of biomass and omega 3 and 6 in Thraustochytrium kinney. Biotecnia. 23(2): 73-80.
Solone, R., Battelle, M., Tommie, F., y Morari, F. 2012. Errors in water retention curves determined with pressure plates:
Effects on the soil water balance. Journal of Hydrology. 470- 471: 65-74.
Thompson, L. M., y Troeh, F. R. 1988. Los suelos y su fertilidad. Editorial Reverte. USACE-H. US Army Corps of Engineers, H. E. C. 2001. Hydrologic modeling system HECHMS User’s Manual. USACE-HEC.
Davis. Van den Putte, A., Govers, G., Leys, A., Langhans, C., Clymans, W. y Diels, J. 2013. Estimating the parameters of the Green and Ampt infiltration equation from rainfall simulation data: Why simpler is better. Journal of Hydrology. 476: 332-344.
Van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.
Soil Science Society of America Journal. 44 (5): 892-898.
Van Genuchten, M. Th. Leij, F. J. y Yates, S. R. 1991. The RETC code for quantifying the hydraulic functions of unsaturated
soils. Robert S. Kerr Environmental research laboratory, U.S. environmental protection agency.
Wang, H., Xiao, B., Wang, M. y Shao, M. 2013. Modeling the soil water retention curves of soil-gravel mixtures with
regression method on the loess plateau of China. PLOS ONE. e59475. 10.1371/journal.pone.0059475.
Xiang, L., Ling W., Zhu Y., Chen L. y Yu Z. 2015. Self-adaptive Green and Ampt infiltration parameters obtained from
measures moisture process. Water Science and Engineering. 9(3): 256-264.
Yin, H. B. y Patel, J. 2018. Comparison of methods to determine the microbial quality of alternative irrigation waters.
Agricultural Water Management. 201: 38-45.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.