Infiltration evaluation with TDR-300 equipment and the model Green and Ampt, in soil with organic additive in Guasave, Sinaloa, Mexico

Authors

  • Homero Lugo Valenzuela Universidad Autónoma de Chapingo, Texcoco, México https://orcid.org/0000-0001-5531-2712
  • Jorge Victo Prado Hernandez Agriculture
  • Alberto Agriculture
  • Joel Pineda Pineda Agriculture
  • Noe Velazquez Lopez Agriculture

DOI:

https://doi.org/10.18633/biotecnia.v24i3.1641

Keywords:

organic additives, infiltration, irrigation sheet.

Abstract

The water needs in crops are naturally satisfied by rains, when it is insufficient, gravity irrigation is applied, which requires knowing the soil’s moisture behavior. There are methods to measure and estimate humidity: the TDR- 300 method calculates humidity in real time and the Green and Ampt model that estimates the irrigation sheet (cm)
in the laboratory. The Green and Ampt method knows the physical parameters of the 12 textural classes of soils, but does not know physical parameters by mixing soil with organic additives. In this investigation, numerical values of hydrodynamic parameters were calculated in soil mixed with organic additive, using TDR-300 equipment in three 30-m
rows, with measurements every 5 m, an experimental design of 3 x 3, with T1-control treatments (soil normal), T2 (Soil + 25% additive) and T3 (soil + 50% additive), applying gravity irrigation, and compare estimates with the Green and Ampt  model. Using Green and Ampt methodology, initial and final
gravimetric humidity, water advance time, recession time and opportunity were calculated. The higher the additive content, the retention increased. The estimates made by the Green and Ampt method were similar with the TDR method.

Downloads

Download data is not yet available.

Author Biographies

Jorge Victo Prado Hernandez, Agriculture

Autonomous University of Chapingo

Alberto , Agriculture

Autonomous University of Chapingo

Joel Pineda Pineda, Agriculture

Autonomous University of Chapingo

Noe Velazquez Lopez, Agriculture

Tokyo University of Agriculture, Chapingo Autonomous University

References

Ali, S., islam, A., Mishra, P. K. y Sitka, A. K. 2016. Green and Ampt approximations: a comprehensive analysis. Journal of Hydrology. 535: 340-355.

Adame-García, J., Murillo-Cuevas, F. D., Flores-de la Rosa, F. R., Velázquez-Mendoza, V., López-Vázquez, M., Cabrera-Mireles, H. y Antonio-Vázquez, E. 2021. Molecular identification and

evaluation of bacteria in the vegetative development and production of habanero. Biotecnia. 23(3): 151-157.

Belaqziz, S., Fazziki, A. E, Mangiarotti, S., Le Page, M., Khabba, S., Raki, S. E. y Jarlan, L. 2013. An agent based modeling for the gravity irrigation management. Journal of Procedía Agriculture the Environmental Sciences. 19: 804-813.

Ojeda-Bustamante, W., Sifuentes-Ibarra E. y Unland-Weiss, H. 2006. Programación integral del riego en maíz en el nortede Sinaloa, México. Agrociencia. 40(1): 13-25.

Comisión Nacional del Agua - Conagua, 2020. Estadísticas agrícolas de hidrométrica y producción granos maíz, sorgo, frijol y garbanzo de la República Mexicana. [Consultado el

de Diciembre 2021] 2020. /http://www.edistritos.com/ DR/estadisticaAgricola/cultivo.php.

Deng, P. y Zhu, J. 2016. Analysis of effective Green and Ampt hydraulic parameters for vertically layered soils. Journal of Hydrology. 538: 705-712.

García, V. 2007. Water infiltration and flow measuring of streams in la sierra de Quila. Agrociencias. 2: 1125-1132.

Green, W.H. y Ampt, G. 1911. Study in soil physics. I. The flow of air and water through soils. The Jurnal of Agriculture Sience. 4: 1-24.

Mendoza-Sánchez, L. G., Rodríguez-España, M., Martínez- Rodríguez, J., García-Galindo, H. S., De la Cruz-Medina, J., Cano-Sarmiento, C. y Monroy-Rivera J. A. 2021. Evaluation of the development and stability of a vanilla (Vanilla planifolia) emulsion from a non-alcoholic extract. Biotecnia. 23: 1-26.

Habili, M. J., y Heidarpour, M. 2015. Application of the Green and Ampt model for infiltration into layered soils. Journal of Hydrology. 527: 824-832.

Kostiakov, A. 1932. On the dynamics of the coefficient of water percolation in soils and on the necessity for studying it from a dynamic point of view for purposes of amelioration.

International Society of Soil Science. 6: 17-21.

Mao, L., Li Y., Hao, W., Zhou, X. y Xu, C. L. T. 2016. A new method to estimate soil water infiltration based on a modified Green and Ampt model. Soil and Tillage Research. 161: 31-37.

Moret, F. y Latorre. 2016. Estimate of the soil water retention curve from the sorptivity and parameter calculated from an upward infiltration experiment. Journal of Hydrology. 22: 95-98.

Mun, S., Sassenrath, G.F., Schmidt, A., Lee, N., Wadsworth, M.C., Rice, B., Corbitt, Jason Q., Schneider, J.M., Tagert, M.L., Pote, J. y Prabhu, R. 2015. Uncertainty analysis of an irrigation scheduling model for water management in crop production. Agriculture Water Management. 155: 100-112. Muñoz-Carpena, R. y Gowdish, L. 2005. Aplicación del método de infiltración de Green and Ampt con redistribución de humedad del suelo entre encharcamientos. Vll Jornada de investigación en zonas no saturada del suelo. 205-213.

Ndiaye, B., Molénat, J., Hallaire, V., Gascuel, C. y Hamon, Y. 2007. Effects of agricultural practices on hydraulic properties and water movement in soils in Brittany (France). Soil and Tillage Research. 93: 251-263. Prado-Hernández, J. V., Pascual-Ramírez, F., Cristóbal-Acevedo,

D., Carrillo-García, M., Hernández-Saucedo, F. R. y Martínez- Ruíz, A. 2017. Evaluation of Green and Ampt infiltration equation in some agricultural soils in México, using USDA information and a modified method from Brooks and Corey. Interciencia. 42(9): 563-569.

López-Pacheco, A. A., Escárcega-Bobadilla, M. V., Mondragón- Camarillo, L., Hayano-Kanashiro, C., Varela-Romero, A., Vílchez-Vargas, R. y Calderón, K. 2020. Evaluation of the nitrogen cycle in an agricultural soil disturbed with nickelsalphen and zinc-salphen compounds. Biotecnia. 23: 12-23.

Rallo, G., Agnese, C., Minacapilli, M. y Provenzano, G. 2011. Comparison of SWAP and FAO agro-hydrological models to schedule irrigation of wine grape. Journal Irrigation and

Drainage. 12: 581-591.

Rao, M.D., Raghuwanshi, N.S. y Singh, R. 2009. Development of a physically based 1D- infiltration model for seal formed irrigated soils. Agricultural Water Mananagent. 85: 165-174.

Ravazzani, D., Ricart, S., de Cartagena, F.R., Monserrat, J., de Lima, I. y Gandolfi, C. 2018. Prospects for improving gravityfed surface irrigation systems in mediterranean European

contexts. Water 9. 1: 20-27.

Reatto, A., da Silva, E. M., Bruand, A., Martins, E. S. y Lima, J. E. F. W. 2008. Validity of the centrifuge method for determining the water retention properties of tropical soils. Soil Science Society of America Journal. 72: 1340-1547.

Schindler, U., Durner, W., von Unold, G. y Müller, L. 2010. Evaporation method for measuring unsaturated hydraulicproperties of soils. Science Society of America Journal. 74: 1071-1083.

Yin, H. B. y Patel, J. 2018. Comparison of methods to determine the microbial quality of alternative irrigation waters. Agricultural Water Management. 201: 38-45.

Published

2022-09-09

How to Cite

Lugo Valenzuela, H., Prado Hernandez, J. V., Vazquez Peña, M. A., Pineda Pineda, J. ., & Velazquez Lopez, N. (2022). Infiltration evaluation with TDR-300 equipment and the model Green and Ampt, in soil with organic additive in Guasave, Sinaloa, Mexico. Biotecnia, 24(3), 35–41. https://doi.org/10.18633/biotecnia.v24i3.1641

Issue

Section

Research Articles

Metrics