Impact of the electrical conductivity of the nutritive solution on biomass, photosynthetic pigments and nitrogen compounds in lettuce

Authors

DOI:

https://doi.org/10.18633/biotecnia.v24i3.1687

Keywords:

Plant nutrition, Soilless cultivation, Nutrient absorption, Yield, Crop quality

Abstract

The ion concentration in the nutrient solution in a soilless system has a direct impact on the yield and quality of the crops. The objective of this research was to evaluate the effect of the electrical conductivity of the nutrient solution on the biomass, pigments and nitrogenous compounds in the lettuce crop. A randomized complete block experimental design was used with five treatments (1, 1.5, 2, 2.5 and 3 dS m-1) and nine repetitions. The total biomass (fresh and dry) and the accumulation of chlorophylls, carotenoids, proteins, amino acids, reduced glutathione and hydrophilic antioxidant capacity ABTS were determined. The results indicate that the electrical conductivity of the nutrient solution that improved biomass accumulation was 2.5 dS m-1, that of 2 dS m-1 increased proteins and amino acids, while the electrical conductivity of 3 dS m-1 improved the concentration of pigments, glutathione and increased hydrophilic antioxidant capacity ABTS, but performance decreased. Proper management of the electrical conductivity of the nutrient solution is a very important factor in improving the yield and quality of crops in soilless systems.

Downloads

Download data is not yet available.

References

Adhikari, N.D., Simko, I. y Mou, B. 2019. Phenomic and physiological analysis of salinity effects on lettuce. Sensors. 19: 4814. https://doi.org/10.3390/s19214814

Aini, N., Yamika, W. S.D. y Ulum, B. 2020. Effect of nutrient concentration, PGPR and AMF on plant growth, yield and nutrient uptake of hydroponic lettuce. International Journal of Agriculture & Biology. 21: 175-183. https://doi.org/10.17957/IJAB/15.0879

Alvarado-Camarillo, D., Valdez-Aguilar, L.A., González-Fuentes, J.A., Rascón-Alvarado, E. y Peña-Ramos, F.M. 2020. Response of hydroponic lettuce to aeration, nitrate and potassium in the nutrient solution. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science. 70: 341-348. https://doi.org/10.1080/09064710.2020.1730430

Amalfitano, C., Del Vacchio, L., Somma, S., Cuciniello, A. y Caruso, G. 2017. Effects of cultural cycle and nutrient solution electrical conductivity on plant growth, yield and fruit quality of ‘Friariello’ pepper grown in hydroponics. Horticultural Science. 44: 91–98. https://doi.org/10.17221/172/2015-HORTSCI

Bilal, H.M., Zulfiqar, R., Adnan, M., Umer, M.S., Islam, H., Zaheer, H., Abbas, W. M., Haider, F. y Ahmad, I. 2020. Impact of salinity on citrus production; A review. International Journal of Applied Research. 6: 173-176.

Bradford, M.M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

da Cunha-Chiamolera, T.P.L., Urrestarazu, M., Filho, A.B.C. y Morales, I. 2017. Agronomic and Economic Feasibility of Tomato and Lettuce Intercropping in a Soilless System as a Function of the Electrical Conductivity of the Nutrient Solution. HortScience. 52: 1195-1200. https://doi.org/10.21273/HORTSCI12170-17

Han, Y., Zhao, C., He, X., Sheng, Y., Ma, T., Sun, Z., Liu, X., Liu, C., Fan, S., Xu, W. y Huang, K. 2018. Purple lettuce (Lactuca sativa L.) attenuates metabolic disorders in diet induced obesity. Journal of Functional Foods. 45: 462-470. https://doi.org/10.1016/j.jff.2018.04.027

Hassan, M. U., Islam, M.M., Wang, R., Guo, J., Luo, H., Chen, F. y Li, X. 2020. Glutamine application promotes nitrogen and biomass accumulation in the shoot of seedlings of the maize hybrid ZD958. Planta. 251: 66. https://doi.org/10.1007/s00425-020-03363-9

Horchani, F., Hajri, R. y Aschi-Smiti, S. 2010. Effect of ammonium or nitrate nutrition on photosynthesis, growth, and nitrogen assimilation in tomato plants. Journal of Plant Nutrition and Soil Science. 173: 610-617. https://doi.org/10.1002/jpln.201000055

Jankovska-Bortkevic, E., Gavelien, V., Šveikauskas, V., Mockeviciute, R., Jankauskien, J., Todorova, D., Sergiev, I. y Jurkoniene, S. 2020. Foliar Application of Polyamines Modulates Winter Oilseed Rape Responses to Increasing Cold. Plants. 9: 179. https://doi.org/10.3390/plants9020179

Khoshbakht, D., Ramin, A.A. y Baninasab, B. 2015. Effects of sodium chloride stress on gas exchange, chlorophyll content and nutrient concentrations of nine citrus rootstocks. Photosynthetica. 53: 241-249. https://doi.org/10.1007/s11099-015-0098-1

Liu, Z., Ren, Z., Zhang, J., Chuang, C.C., Kandaswamy, E., Zhou, T. y Zou, L. 2018. Role of ROS and Nutritional Antioxidants in Human Diseases. Frontiers in Physiology. 9: 477. https://doi.org/10.3389/fphys.2018.00477

Manos, D.P. y Xydis, G. 2019. Hydroponics: Are we moving towards that direction only because of the environment? a discussion on forecasting and a systems review. Environmental Science and Pollution Research. 26: 12662-12672. https://doi.org/10.1007/s11356-019-04933-5

Michelon, N., Pennisi, G., Myint, N.O., Orsini, F. y Gianquinto, G. 2021. Optimization of Substrate and Nutrient Solution Strength for Lettuce and Chinese Cabbage Seedling Production in the Semi-Arid Environment of Central Myanmar. Horticulturae. 7: 64. https://doi.org/10.3390/horticulturae7040064

Morales-Espinoza, M.C., Cadenas-Pliego, G., Pérez-Alvarez, M., Hernández-Fuentes, A. D., Cabrera de la Fuente, M., Benavides-Mendoza, A., Valdés-Reyna, J. y Juárez-Maldonado, A. 2019. Se Nanoparticles Induce Changes in the Growth, Antioxidant Responses, and Fruit Quality of Tomato Developed under NaCl Stress. Molecules. 24: 3030. https://doi.org/10.3390/molecules24173030

Preciado-Rangel, P., Rueda-Puente, E.O., Valdez-Aguilar, L.A., Reyes-Pérez, J.J., Gallegos-Robles, M.Á. y Murillo-Amador, B. 2021. Conductividad eléctrica de la solución nutritiva y su efecto en compuestos bioactivos y rendimiento de pimiento morrón (Capsicum annuum L.). Tropical and Subtropical Agroecosystems: 24: 52.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. y Rice-Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., Lugli, P., Orzes, G., Mazzetto, F., Astolfi, S., Terzano, R. y Cesco, S. 2019. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Frontiers in Plant Science. 10: 923. https://doi.org/10.3389/fpls.2019.00923

Shinde, C.T. y Marathe, P.S. 2021. Farming Without Soil in Today’s Era. Iconic Research and Engineering Journals. 4: 24-27.

Silva, P.F., Matos, R.M., Bonou, S. M., Sobrinho, T.G., Borges, V.E., Dantas Neto, J. y Melo Júnior, A.P. 2019. Yield of the hydroponic lettuce under levels of salinity of the nutrient solution. African Journal of Agricultural Research. 14: 686-693. https://doi.org/10.5897/AJAR2018.13782

Simko, I., Hayes, R.J., Mou, B. y McCreight, J.D. 2014. Lettuce and Spinach. In: Yield Gains in Major U.S. Field Crops. S. Smith., B. Diers., J Specht. y B. Carver. (ed.), pp. 53-86. CSSA Special Publication; American Society of Agronomy; Inc.: Madison; WI; USA; Crop Science Society of America; Inc.: Fitchburg; WI; USA; Soil Science Society of America; Inc.: Madison; WI; USA. https://doi.org/10.2135/cssaspecpub33

Steiner, A.A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil. 15: 134-154. https://doi.org/10.1007/BF01347224

Wellburn, A.R. 1994. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of Plant Physiology. 144: 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2

Xu, C. y Mou, B. 2015. Evaluation of Lettuce Genotypes for Salinity Tolerance. HortScience. 50: 1441-1446. https://doi.org/10.21273/HORTSCI.50.10.1441

Xue, T., Hartikainen, H. y Piironen, V. 2001. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil. 237: 55-61. https://doi.org/10.1023/A:1013369804867

Yemm, E.W. y Cocking, E.C. 1955. The determination of amino-acids with ninhydrin. Analyst. 80: 209-214. https://doi.org/10.1039/AN9558000209.

Yoon, H., Kang, Y.G. y Chang, Yoon SeokKim, J.H. 2019. Effects of Zerovalent Iron Nanoparticles on Photosynthesis and Biochemical Adaptation of Soil-Grown Arabidopsis thaliana. Nanomaterials. 9: 1543. https://doi.org/10.3390/nano9111543

Zechmann, B. 2020. Subcellular roles of glutathione in mediating plant defense during biotic stress. Plants: 9: 1067. https://doi.org/10.3390/plants9091067

Published

2022-10-06

How to Cite

Garcia Terrazas, M. I., Santillán Carrillo, I. E., Holguín Mina, R., & Sariñana Aldaco, O. (2022). Impact of the electrical conductivity of the nutritive solution on biomass, photosynthetic pigments and nitrogen compounds in lettuce. Biotecnia, 24(3), 115–122. https://doi.org/10.18633/biotecnia.v24i3.1687

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)