Caracterización del co-encapsulamiento de Lactobacillus plantarum y ácidos grasos omega-3 en una matriz de alginato-pectina
DOI:
https://doi.org/10.18633/biotecnia.v21i2.904Keywords:
Micro-encapsulados funcionales, probióticos, bioactivos, aceite de linaza, alginato-pectinaAbstract
Los alimentos funcionales producen un efecto benéfico en la salud de quien los consume. Algunos de ellos se desarrollan adicionando probióticos o compuestos bioactivos, que son sensibles a condiciones adversas presentes durante la vida de anaquel del alimento o al pasar por el tracto gastrointestinal. En ambos casos, una alternativa para protegerlos, es encapsularlos en matrices grado alimenticio. Se co-encapsularon Lactobacillus plantarum y ácidos grasos omega-3 (Ω3) en una matriz de alginato-pectina. Los Ω3 se obtuvieron por extracción en frío de aceite de linaza; su análisis cuantitativo por cromatografía de gases mostro un contenido del 58 %. La relación de matriz polimérica que produjo mejores cápsulas fue 2:1, usando concentraciones de 1.5 % y 2.0 %, de alginato y pectina, respectivamente. La mejor relación matriz-probiótico-linaza fue de 5.0:1.0:1.0 (suspensión celular conteniendo aproximadamente 2.8 x 108 UFC/mL). Se obtuvieron cápsulas esféricas con carga superficial, negativa (- 4.6± 0.41 mV) y diámetros entre 150 y 200 μm. La eficiencia de encapsulamiento de L. plantarum fue del 85 %, observándose una disminución de 0.7±0.14 Log UFC/g, después de liofilizar las microcápsulas para mejorar su estabilidad durante el almacenamiento. Después de 30 días a -20 °C, no se observaron diferencias (p > 0.05) en la sobrevivencia del probiótico, ni cambios en la concentración de peróxidos del aceite co-encapsulados, indicando que el encapsulamiento protegió tanto a L. plantarum como a los Ω3. Estos micro-encapsulados podrían utilizarse en la formulación de productos funcionales debido a su bajo costo de producción y fácil estabilización.
Downloads
References
Avramenko, N. A., Chang, C., Low, N. H., y Nickerson, M. T. (2016). Encapsulation of flaxseed oil within native and modified lentil protein-based microcapsules. Food Research International, 81, 17-24.
Baker, E. J., Miles, E. A., Burdge, G. C., Yaqoob, P., y Calder, P. C. (2016). Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Progress in Lipid Research, 64, 30-56.
Barreto, F. M., Colado Simão, A. N., Morimoto, H. K., Batisti Lozovoy, M. A., Dichi, I., y Helena da Silva Miglioranza, L. (2014). Beneficial effects of Lactobacillus plantarum on glycemia and homocysteine levels in postmenopausal women with metabolic syndrome. Nutrition, 30(7–8), 939-942.Barros, R., Moreira, A., Fonseca, J., Delgado, L., Graça Castel-Branco, M., Haahtela, T., Lopes, C., y Moreira, P. (2011). Dietary intake of α-linolenic acid and low ratio of n-6:n-3 PUFA are associated with decreased exhaled NO and improved asthma control. British Journal of Nutrition, 106(3), 441-450.
Ben Salah, R., Trabelsi, I., Hamden, K., Chouayekh, H., y Bejar, S. (2013). Lactobacillus plantarum TN8 exhibits protective effects on lipid, hepatic and renal profiles in obese rat. Anaerobe, 23, 55-61.
Burgain, J., Gaiani, C., Linder, M., y Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104(4), 467-483.
Callewaert, M., Laurent-Maquin, D., y Edwards-Lévy, F. (2007). Albumin-alginate-coated microspheres: resistance to steam sterilization and to lyophilization. International journal of pharmaceutics, 344(1-2), 161-164.
Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., y Hubinger, M. D. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443-451.
Choi, E. A., y Chang, H. C. (2015). Cholesterol-lowering effects of a putative probiotic strain Lactobacillus plantarum EM isolated from kimchi. LWT - Food Science and Technology, 62(1, Part 1), 210-217.
Chowdhury, R., Warnakula, S., Kunutsor, S., Crowe, F., Ward, H. A., Johnson, L., y Di Angel Antonio, E. (2014). Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Annals of Internal Medicine, 160(6), 398-406.Comunian, T. A., y Favaro-Trindade, C. S. (2016). Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocolloids, 61, 442-457.
Eratte, D., Gengenbach, T. R., Dowling, K., Barrow, C. J., y Adhikari, B. (2016a). Survival, oxidative stability, and surface characteristics of spray dried co-microcapsules containing omega-3 fatty acids and probiotic bacteria. Drying Technology, 34(16), 1926-1935.Eratte, D., McKnight, S., Gengenbach, T. R., Dowling, K., Barrow, C. J., y Adhikari, B. P. (2015). Co-encapsulation and characterization of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. Journal of Functional Foods, 19, Part B, 882-892.Eratte, D., Wang, B., Dowling, K., Barrow, C. J., y Adhikari, B. (2016b). Survival and fermentation activity of probiotic bacteria and oxidative stability of omega-3 oil in co-microcapsules during storage. Journal of Functional Foods, 23, 485-496.
FAO/WHO, 2002. Joint Working Group Report on Drafting Guidelines for the Evaluation of Probiotic in Food. Canada, London, Ontario. April 30 and May 1.
Ghidurus, M., Calin, A., Beciu, S., y Ladaru, R. (2015). Functional foods, probiotics and their role on human health. Journal of Biotechnology, 208, Supplement, S67. Ghidurus, M., Calin, A., Beciu, S., y Ladaru, R. (2015). Functional foods, probiotics and their role on human health. Journal of Biotechnology, 208, Supplement, S67.
Guo, J., y Kaletunç, G. (2016). Dissolution kinetics of pH responsive alginate-pectin hydrogel particles. Food Research International, 88, Part A, 129-139.
Hajlaoui, H., Mighri, H., Aouni, M., Gharsallah, N., y Kadri, A. (2016). Chemical composition and in vitro evaluation of antioxidant, antimicrobial, cytotoxicity and anti-acetylcholinesterase properties of Tunisian Origanum majorana L. essential oil. Microbial Pathogenesis, 95, 86-94.
Ilavenil, S., Kim, H. D., Valan Arasu, M., Srigopalram, S., Sivanesan, R., y Choi, C. K. (2015). Phenyllactic acid from Lactobacillus plantarum promotes adipogenic activity in 3T3-L1 adipocyte via up-regulation of PPAR-γ2. Molecules, 20(8).
Jeun, J., Kim, S., Cho, S.-Y., Jun, H.-j., Park, H.-J., Seo, J.-G., y Lee, S.-J. (2010). Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928 by increased bile acid excretion in C57BL/6 mice. Nutrition, 26(3), 321-330.
Jiménez P, P., Masson S, L., y Quitral R, V. (2013). Composición química de semillas de chía, linaza y rosa mosqueta y su aporte en ácidos grasos omega-3. Revista chilena de nutrición, 40, 155-160.
Leong, J.-Y., Lam, W.-H., Ho, K.-W., Voo, W.-P., Lee, M. F.-X., Lim, H.-P., y Chan, E.-S. (2016). Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, 24, 44-60.
Li, H., Thuy Ho, V. T., Turner, M. S., y Dhital, S. (2016). Encapsulation of Lactobacillus plantarum in porous maize starch. LWT - Food Science and Technology, 74, 542-549.
Mokarram, R. R., Mortazavi, S. A., Najafi, M. B. H., y Shahidi, F. (2009). The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International, 42(8), 1040-1045.
Morales, M. E., y Ruiz, M. A. (2016). 16 - Microencapsulation of probiotic cells: applications in nutraceutic and food industry A2 - Grumezescu, Alexandru Mihai Nutraceuticals (pp. 627- 668): Academic Press.
Rafiee, M., Sotoudeh, G., Djalali, M., Alvandi, E., Eshraghian, M., Sojoudi, F., y Koohdani, F. (2016). Dietary ω-3 polyunsaturated fatty acid intake modulates impact of Insertion/Deletion polymorphism of ApoB gene on obesity risk in type 2 diabetic patients. Nutrition, 32(10), 1110-1115.
Rajam, R., y Anandharamakrishnan, C. (2015). Spray freeze drying method for microencapsulation of Lactobacillus plantarum. Journal of Food Engineering, 166, 95-103.
Sampson, S. (2015). Functional Foods: The Connection Between Nutrition, Health, and Food Science. Journal of Nutrition Education and Behavior, 47(1), 117-119.
Silva, M. P., Tulini, F. L., Ribas, M. M., Penning, M., Favaro-Trindade, C. S., y Poncelet, D. (2016). Microcapsules loaded with the probiotic Lactobacillus paracasei BGP-1 produced by co-extrusion technology using alginate/shellac as wall material: Characterization and evaluation of drying processes. Food Research International, 89(1), 582-590.
Slover, H. T., y Lanza, E. (1979). Quantitative analysis of food fatty acids by capillary gas chromatography. Journal of the American Oil Chemists Society, 56(12), 933-943.
Stevenson, C., Blaauw, R., Fredericks, E., Visser, J., y Roux, S. (2014). PP137-SUN: Randomized Clinical Trial: Effect of Lactobacillus plantarum 299V on Symptoms of Irritable Bowel Syndrome. Clinical Nutrition, 33, S71.
Woo, J.-Y., Gu, W., Kim, K.-A., Jang, S.-E., Han, M. J., y Kim, D.-H. (2014). Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammation in a d-galactose-induced accelerated aging mouse model. Anaerobe, 27, 22-26.
Wu, Y., Zhu, C., Chen, Z., Chen, Z., Zhang, W., Ma, X., Wang, L., Yang, X., y Jiang, Z. (2016). Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells. Veterinary Immunology and Immunopathology, 172, 55- 63.
Downloads
Published
How to Cite
Issue
Section
License
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.