Explorando diferentes subproductos considerados como residuos por la industria pesquera en México//Exploring different by-products considered as residues by the fishery industry in México

Autores/as

  • Celia Olivia García-Sifuentes Laboratorio de Bioquímica y Calidad de Productos Pesqueros. Coordinación de Alimentos de Origen Animal. Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora, México, CP 83304. Ph/Fax: +52(662)280-0421, +52(662)289-2400 ext 606 https://orcid.org/0000-0003-0927-7885
  • Susana Maria Scheuren-Acevedo Laboratorio de Bioquímica y Calidad de Productos Pesqueros. Coordinación de Alimentos de Origen Animal. Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora, México, CP 83304. Ph/Fax: +52(662)280-0421, +52(662)289-2400 ext 606 https://orcid.org/0000-0001-5801-4593
  • Julio Cesar Zamorano-Apodaca Laboratorio de Bioquímica y Calidad de Productos Pesqueros. Coordinación de Alimentos de Origen Animal. Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas No. 46, Hermosillo, Sonora, México, CP 83304. Ph/Fax: +52(662)280-0421, +52(662)289-2400 ext 606

DOI:

https://doi.org/10.18633/biotecnia.v22i2.1246

Palabras clave:

subproductos, industria pesquera, composición, residuos

Resumen

La producción y poco aprovechamiento de subproductos de los grandes centros de distribución en México causa problemas ambientales. Se exploró la composición fisicoquímica de distintos subproductos evaluando el pH, humedad, lípidos, ceniza, proteínas, nitrógeno no proteico, bases volátiles totales, hidroxiprolina y prolina en tres sitios (zonas) de muestreo durante tres meses diferentes, cada zona o sitio representó muestras diferentes, así: MM (mezcla de subproductos de diferentes especies), AT (subproductos derivados del enlatado de atún), TL (subproductos derivados del fileteo de tilapia). Se registraron diferencias en la composición química entre los tres meses de muestreo y entre los tres sitios evaluados. Los resultados mostraron que los componentes más importantes que se pueden recuperar son: proteínas, para el sitio MM, incluyendo el colágeno; lípidos y proteínas, para el sitio AT; colágeno y lípidos para el sitio TL. Los valores promedio de pH (7.89), humedad (72.75 %) y BVT (188 mg N/100 g) para el sitio MM, demuestran la necesidad de mejorar el manejo de los subproductos en ese sitio. Los subproductos de los tres sitios de muestreo mostraron ser una fuente alternativa de componentes importantes como proteínas que no son colágeno, colágeno, lípidos y cenizas, dependiendo del sitio. Sin embargo, es importante resaltar la necesidad de mejorar el manejo de los subproductos para lograr un mayor aprovechamiento.

ABSTRACT

The production and under-utilization of by-products from the large distribution centers in México, promotes environmental problems. The physicochemical composition of different by-products produced by the large distribution centers throughout different months was explored evaluating pH, moisture, lipids, ash, proteins, non-protein nitrogen, total volatile bases, hydroxyproline and proline, in three places during three months, each place represented different sample, including: MM (by-products from different fish species), AT (by-products of tuna canning, and TL (tilapia by-products). There were differences in chemical composition among the three months and the evaluated places. Results showed that the most important components that could be recovered are proteins for MM, collagen, lipids and proteins for AT and collagen and lipids for TL. Average values of pH (7.89), moisture (72.75 %) and total volatile bases (188 mg N/100 g) demonstrate the need of improving the by-products management in the MM place. By-products from the three evaluated places showed be an alternative source to obtain important components including non-collagen proteins, collagen, lipids, and ash depending on the sampling place. However, it is important to highlight the need of improving the handling of by-products to achieve greater exploitation.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abelti, A.L. 2013. Microbiological and chemical changes of Nile Tilapia (Oreochromis niloticus L.) fillet during ice storage: effect of age and sex. Advance Journal of Food Science and Technology. 5 (10): 1260-1265. DOI: 10.19026/ajfst.5.3093.

Bechtel, P.J., Watson, M.A., Lea, J.M., Bett, G.K.L. y Bland, J.M. 2019. Properties of bone from Catfish heads and frames. Food Science y Nutrition. 7 (4): 1396–1405. DOI: 10.1002/ fsn3.974.

Bringas, A.L., Zamorano, O.A., Rojo, R.J.B., González, F.M.L., Pérez, V.M., Cárdenas, L.J.L. y Navarro, G.G. 2018. Evaluación del ensilado fermentado de subproductos de tilapia y su utilización como ingrediente en dietas para bagre de canal. Biotecnia. 20 (2): 85-94.

Castillo, Y.F.J., Jimenez, R.E.I., Cenizales, R.D.F., Marquez, R.E., Montoya, C.N., Ruiz, C.S. y Ocano, H.V.M. 2014. Postmortem biochemical changes and evaluation of the freshness in the muscle of tilapia (Oreochromis niloticus) during the storage in ice. Journal of Fisheries and Aquatic Science. 9 (6): 435- 445. DOI: 10.3923/jfas.2014.435.445.

De Oliveira, D.A.S.B, Licodiedoff, S., Furigo, A.J.R., Ninow, J.L., Bork, A.J., Podesta, R., Block, J.M. y Waszczynskyj, N. 2017. Enzymatic extraction of oil from yellowfin tuna (Thunnus albacares) by products: A comparison with other extraction methods. International Journal of Food Science and Technology. 52: 699-705. DOI: 10.1111/ijfs.13324.

Ezati, P., Tajik, H., Moradi, M. y Molaei, R. 2019. Intelligent pHsensitive indicator based on starch-cellulose and alizarin dye to track freshness of rainbow trout fillet. International Journal of Biological Macromolecules. 132: 157-165.

Garrido, G.E., Orawattanamateekul, W., Sentina J. y Srinivasa G.T.K. 2013. By-products of tuna processing. Food and Agriculture Organization of the United Nations, GLOBEFISH, Products, Trade and Marketing Branch, Fisheries and Aquaculture Policy and Economics Division. Rome, Italy. Disponible en linea en: http://www.fao.org/3/a-bb215e.pdf.

Ghaly, A.E., Ramakrishnan, V.V., Brooks, M.S., Budge, S.M. y Dave, D. 2013. Fish Processing Wastes as a Potential Source of Proteins, Amino Acids and Oils: A Critical Review. Journal Microbial and Biochemical Technology. 5 (4): 107-129. DOI: 10.4172/1948-5948.1000110.

He, G., Yin, Y., Yan, X. y Wang, Y. 2017. Semi-bionic extraction of effective ingredient from fishbone by high intensity pulsed electric fields. Journal of Food Process Engineering. 40 (2): 1-9. DOI: 10.1111/jfpe.12392.

Hernández, C., Hardy, R.W., Contreras, R.D., López, M.B., González, R.B. y Domínguez, J.P. 2014. Evaluation of tuna by-product meals a protein source in feeds for juvenile spotted rose snapper (Lutjanus guttatus). Aquaculture Nutrition. 20 (6): 574–582. DOI: 10.1111/ANU.12110.

Huss, H.H. 1995. Quality and quality changes in fresh fish. FAO Fisheries technical paper 348. Disponible en: http://www.fao.org/DOCREP/V7180E/V7180E00.HTM (Website accessed: Nov, 2019).

Jayathilakan, K., Sultana, K., Radhakrishna, K. y Bawa, A.S. 2012. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. Journal of Food Science and Technology. 49 (3): 278-293. DOI 10.1007/ s13197-011-0290-7.

Jie, L., Wang, M., Qiao, Y. Tian, Y., Liu, J., Qin S. y Wu, W. 2018. Extraction and characterization of type I collagen from skinof tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering. Process Biochemistry. (74): 156-163. DOI: 10.1016/j.procbio.2018.07.009

Jim, F., Garamumhango, P. y Mussara, C. 2017. Comparative analysis of nutritional value of Oreochromis niloticus (Linnaeus), Nile Tilapia, meat from three different ecosystems. Journal of Food Quality. 2017: 1-8 DOI: 10.1155/2017/6714347.

Komur, B., Altun, E., Aydogdu, M.O., Bilgic, D., Gokce, H., Ekren, N., Salman, S., Inan, A. T., Oktar, F.N. y Gunduz, O. 2017. Hydroxyapatite synthesis from fish bones: Atlantic Salmon (Salmon Salar). Acta Physica Polonica. 131 (3): 400-402. DOI: 10.12693/APhysPolA.131.400.

Kosseva, M.R. 2013. Sources, Characterization, and Composition of Food Industry. En: Wastes Food Industry Wastes. Kosseva, R. M. y C. Webb (eds.). pp. 37-60. Elsevier Inc. USA. DOI: 10.1016/B978-0-12-391921-2.00003-2.

Maiz, B.H.D., Guadix, E.M., Gargouri, M. y Carpio, C.F.J. 2019. Valorization of tuna viscera by endogenous enzymatic treatment. International Journal of Food Science and Technology. 54:1100-1108. DOI: 10.1111/ifs.14009.

Márquez-Figueroa, Y., Cabello, A.M., Villalobos, L.B., Gracia, G. y García, B.E. 2006. Cambios físicos-químicos y microbiológicos observados durante el proceso tecnologico de la conserva de atun. Zootecnia Tropical 24 (1): 17-29.

Massa, A.E. 2006. Cambios bioquímicos post-mortem en musculo de diferentes especies pesqueras. Determinación de la vida útil de las mismas en frio. Tesis de Doctorado en Ciencias (Biología). Facultad de Ciencias Exactas y Naturales. Universidad Nacional Mar de Plata. Mar de Plata, Argentina. 219p.

Méndez-Aguilar, F.D., Olvera, N.M.A., Rodríguez, R.S. y Rosas, V.C. 2014. Nutritive value of four by-product meals as potential protein sources in diets for Octopus maya. Hidrobiologica. 24 (1): 69-77.

Osorio-Contreras, M.A. 2014. Producción de harinas obtenidas a partir de coproductos de la industria del fileteado del pescado en Colombia. Tesis de Maestría (producción animal), Facultad de Medicina Veterinaria y Zootecnia. Universidad Nacional de Colombia. Bogota, Colombia. 101 p. Tambien disponible en: http://bdigital.unal.edu.co/48468/1/1018422052.2015.pdf.

Özyurt, G., Ozkutuk, S.A., Ucar, Y., Durmuş, M. y Ozogul, Y. 2019. Evaluation of the potential use of discard species for fish silage and assessment of its oils for human consumption. International Journal of Food Science and Technology. 54 (4): 1081-1088. DOI: 10.1111/ijfs.13954.

Rabiei, S., Nikoo, M., Rezaei, M. y Rafleian, K.M. 2017. Marinederived bioactive peptides with pharmacological activities A review. Journal of Clinical and Diagnostic Research. 11 (10): KE01-KE06. DOI: 10.7860/JCDR/2017/28672.10753.

Rani, P., Kumar, V.P., Rao, R.K. y Shameem, U. 2016. Seasonal variation of proximate composition of tuna fishes from Visakhapatnam fishing harbor, east coast of India. International Journal of Fisheries and Aquatic Studies. 4 (6): 308-313.

Shaviklo, R.A. 2015. Development of fish protein powder as an ingredient for food applications: a review. Journal of Food Science Technology. 52 (2): 648-661. DOI: 10.1007/s13197-013-1042-7.

Siewe, F.B., Akouan, F.J.A., Sandesh, S.K., Cathrine, M.S.B. y Kudre, T. G. 2019. Green and innovative techniques for recovery of valuable compounds from seafood by-products and discards: A review. Trends in Food Science & Technology. 85: 10-22. DOI: 10.1016/j.tifs.2018.12.004.

Sultanbawa, Y. y Asknes. A. 2006. Tuna process waste: an unexploited resource. Info Fish International 3: 37-40.

Tacon, A. y Metian, M. 2015. Feed Matters: Satisfying the feed demand of aquaculture. Reviews in Fisheries Science & Aquaculture. 23 (1): 1-10.

Vázquez, J.A., Fernández, C.A., Blanco, M., Rodríguez, A.I., Moreno, H., Bordarías, J. y Pérez, M.R.I. 2019. Development of bioprocesses for the integral valorization of fish discards. Biochemical Engineering Journal. 144: 198-208. DOI: 10.1016/j.bej.2019.02.004.

Vázquez, O.F.A., Caire, C.G. Higuera-Ciapara, I. y Hernández, G. 1997. High performance liquid chromatographic determination of free aminoacids in Shrimp. Journal Liquid Cromatography. 18 (10): 2059-2068.

Vidanarachchi, J.K., Ranadheera, C.S., Wijerathne, T.D., Udayangani, R.M., Samaraweera H. y Pickova J. 2014. Applications of Seafood By-products in the Food Industry and Human Nutrition. En: Seafood processing by-products: Trends and application. Kim, S. K. (Ed.). Springer, New York, NY. pp. 463-528. DOI: 10.1007/978-1-4614-9590-1_23.

Woyewoda, A.D., Shaw, S.J., Ke, P.J. y Burns, B.G. 1986. Recommended laboratory methods for assessment of fish quality. Canadian Technical Report of Fisheries and Aquatic Sciences. (1448): 35-40.

Zhu, S., Yuan, Q., Yang, M., You, J., Yin, T., Gu, Z., Hu, Y. y Xiong, S. 2019. A quantitative comparable study on multi-hierarchy conformation of acid and pepsin-solubilized collagens from the skin of grass carp (Ctenopharyngodon idella). Materials Science & Engineering. 96: 446-457. DOI: 10.1016/j.msec.2018.11.043.

Descargas

Publicado

2020-03-21

Cómo citar

García-Sifuentes, C. O., Scheuren-Acevedo, S. M., & Zamorano-Apodaca, J. C. (2020). Explorando diferentes subproductos considerados como residuos por la industria pesquera en México//Exploring different by-products considered as residues by the fishery industry in México. Biotecnia, 22(2), 61–69. https://doi.org/10.18633/biotecnia.v22i2.1246

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.