Efecto de diferentes proporciones de luz LED azul:roja en plantas de chile habanero (Capsicum chinense Jacq.)

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v23i1.1288

Palabras clave:

Capsicum chinense Jacq., chile habanero, luz LED, ambiente controlado

Resumen

El chile habanero es el cultivo hortícola de mayor im­portancia económica en la península de Yucatán. Este podría desarrollarse en ambiente controlado con iluminación LED y permitiría tener una producción continua, con un aumento exponencial de rendimiento y estar libre de plagas y enfer­medades. Los objetivos fueron evaluar el efecto de cinco proporciones de luz LED azul:roja y un testigo fluorescente sobre crecimiento en planta, concentración de pigmentos fotosintéticos, compuestos fenólicos y nutrimental en hoja; germinación de polen, grosor de hoja, anatomía de ovario y antera de chile habanero ‘Mayan Ba’alché’ bajo condiciones controladas de crecimiento. Los resultados mostraron que los tratamientos no indujeron un efecto en crecimiento de plan­ta. La luz roja favoreció el rendimiento de frutos y frecuencia estomática. La luz roja monocromática favoreció la concen­tración de pigmentos fotosintéticos, Mg y Mn e indujo menor concentración de P y Cu. La luz azul monocromática favoreció la concentración de compuestos fenólicos. El testigo indujo mayor concentración de K entre algunos tratamientos LED e incrementó la germinación de polen y el grosor de hoja al igual que la luz azul monocromática. La anatomía de los óvu­los en ovarios y el polen en anteras no presentaron ningún efecto por los tratamientos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jorge Enrique Mendoza Paredes, Universidad Autónoma Chapingo

Doctorado en Ciencias en Horticultura, UACh (En finalización)

Maestría en Ciencias en Horticultura, UACh

Citas

Amoozgar, A., Mohammadi, A. y Sabzalian, M.R. 2016. Impact of light-emitting diode irradiation on the photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica. 55: 85-95. https://doi.org/10.1007/s11099-016-0216-8

Alcántar, G. y Sandoval, M. 1999. Manual de análisis químico de tejido vegetal. Publicación especial 10. Sociedad Mexicana de la Ciencia del Suelo, A. C. Estado de México, México.

Agarwal, A., Gupta, S.D., Barman, M. y Mitra, A. 2018. Photosynthetic apparatus plays a central role in photosensitive physiological acclimations affecting spinach (Spinacia oleracea L.) growth in response to blue and red photon flux ratios. Environmental and Experimental Botany. 156: 170-182. https://doi.org/10.1016/j.envexpbot.2018.09.009

AOAC. 1980. Official methods of analysis. 12th ed. Association of Official Analytical Chemistry. Washington, D.C.

Berkovich, Y.A., Konovalova, I.O., Smolyanina, S.O., Erokhin, A.N., Avercheva, O.V., Bassarskaya, E.M., Kochetova, G.V., Zhigalova, T.V., Yakovleva, O.S. y Tarakanov, I.G. 2017. LED crop illumination inside space greenhouses. REACH - Reviews in Human Space Exploration. 6: 11–24. http://dx.doi.org/10.1016/j.reach.2017.06.001

Blankenship, R.E. 2014. Molecular mechanisms of photosynthesis. 2nd ed. Wiley Blackwell. New Delhi, India.

Bojórquez-Quintal, E., Velarde-Buendía, A., Ku-González, A., Carillo-Pech, M., Ortega-Camacho, D., Echevarría-Machado, I., Pottosin I. y Martínez-Estévez, M. 2014. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation. Frontiers in Plant Science. 5: 605. http://dx.doi.org/10.3389/fpls.2014.00605

CICY. 2016. Ficha informativa unidad productora de semillas de chile habanero. Centro de Investigación Científica de Yucatán. Abril (2016): 1-15. [Consultado 10 enero 2020]. Disponible en: https://www.cicy.mx/Documentos/CICY/quienes-somos/2016/Ficha-UPS-Habanero.pdf

Craver, J.K., Boldt, J.K. y Lopez, R.G. 2018. Radiation intensity and quality from sole-source light-emitting diodes affect seedling quality and subsequent flowering of long-day bedding plant species. HortScience. 53(10): 1407-1415. https://dx.doi.org/10.21273/HORTSCI13228-18

Dhawan, A.K. y Malik, C.P. 1981. Effect of growth regulators and light on pollen germination and pollen tube growth in Pinus roxburghii Sarg. Annals of Botany. 47(2): 239-248.

Demotes-Mainard, S., Pérona, T., Corotb, A., Bertheloota, J., Gourrierecb, J.L., Pelleschi-Travierb, S., Crespel, L., Morel, P., Huché-Thélier, L., Boumaza, R., Vian, A., Guérin, V., Leduc, N. y Sakr, S. 2016. Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany. 121: 4–21. http://dx.doi.org/10.1016/j. envexpbot.2015.05.010

Evert, R.F. y Eichhorn, S.E. 2012. Raven biology of plants. 8 ed. MacMillan, USA.

Gangadhar, B.H., Mishra, R.K., Pandian, G. y Park, S.W. 2012. Comparative study of color, pungency, and biochemical composition in chili pepper (Capsicum annuum) under different light-emitting diode treatments. Hortscience. 47(12): 1729–1735. https://doi.org/10.21273/HORTSCI.47.12.1729

Gangappa, S.N. y Botto, J.F. 2016. The multifaceted roles of hy5 in plant growth and development. Molecular Plant. 9: 1353–1365. https://dx.doi.org/10.1016/j.molp.2016.07.002

García-Caparrós, P., Almansa, E.M., Chica, R.M. y Lao, M.T. 2019. Effects of artificial light treatments on growth, mineral composition, physiology, and pigment concentration in Dieffenbachia maculate “Compacta” plants. Sustainability. 11: 2867. https://dx.doi.org/10.3390/su11102867

Gerovac, J.R., Craver, J.K., Boldt, J.K. y Lopez, R.G. 2016. Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens. HortScience. 51(5): 497-503. https://doi.org/10.21273/HORTSCI.51.5.497

Hasan, M., Bashir, T., Ghosh, R., Lee, S. K., y Bae, H. 2017. An overview of LEDs’ effects on the production of bioactive compounds and crop quality. Molecules. 22(9): 1420. https://dx.doi.org/10.3390/molecules22091420

Heo, J. W., Kang, D. H., Bang, H. S., Hong, S. G., Chun, C. H., y Kang, K. K. 2012. Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Korean Journal of Horticultural Science and Technology. 30(1): 6-12. https://dx.doi.org/10.7235/hort.2012.11118

Hoagland, D.R. y Arnon, D.I. 1950. The water-culture method for growing plants without soil. Circular 347. California Agricultural Experiment Station. California, USA.

Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W. y Harbinson, J. 2010. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany. 61(11): 3107-3117. http://dx.doi.org/10.1093/jxb/erq132

Hoyo, Y., Fujiwara, K. y Hoshino, Y. 2014. Effects of different wavelengths of LED light on pollen germination and direction of pollen tube elongation in Cyrtanthus mackenii. Advances in Horticultural Science. 28(4): 190-194.

Huché-Thélier, L., Crespel, L., Gourrierec, J.L., Morel, P., Sakr, S. y Leduc, N. 2016. Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environmental and Experimental Botany. 121: 22–38. https://dx.doi.org/10.1016/j.envexpbot.2015.06.009

Jeon, Y., Son, K., Kim, S. y Oh, M. 2017. Growth and bioactive compounds as affected by irradiation with various spectrum of light-emitting diode lights in dropwort. Horticulture. Environment, and Biotechnology. 58: 467–478. https://doi.org/10.1007/s13580-017-0354-3

Katagiri, F., Canelon-Suarez, D., Griffin, K., Petersen, J., Meyer, R.K. y Siegle, M. 2015. Design and construction of an inexpensive homemade plant growth chamber. PLoS ONE. 10(5): e0126826. https://doi.org/10.1371/journal.pone.0126826

Kozai, T. y Niu, G. 2016. Role of the plant factory with artificial lighting (PFAL) in urban areas. En: Plant factory: An indoor vertical farming system for efficient quality food production. T. Kozai, G. Niu y M. Takagaki (ed.), pp 115-128. Academic Press, USA. https://dx.doi.org/10.1016/B978-0-12-801775- 3.00002-0

Kubota, C. 2016. Growth, development, transpiration and translocation as affected by abiotic environmental factors. En: Plant factory: An indoor vertical farming system for efficient quality food production. T. Kozai, G. Niu y M. Takagaki (ed.), pp 151-164. Academic Press, USA. http:// dx.doi.org/10.1016/B978-0-12-801775-3.00010-X

Lim, T. K. 2013. Capsicum chinense. En: Edible medicinal and non-medicinal plants: Volume 6, Fruits. T. K. Lim (ed.), pp 205-212. Springer Science+Business Media, Dordrecht. https://doi.org/10.1007/978-94-007-5628-1_30

Liu, X. Y., Jiao, X. L., Chang, T. T., Guo, S. R. y Xu, Z. G. 2018. Photosynthesis and leaf development of cherry tomato seedlings under different LED-based blue and red photon flux ratios. Photosynthetica. 56: 1212-1217. https://dx.doi.org/10.1007/s11099-018-0814-8

Miao, Y., Chen, Q., Qu, M., Gao, L. y Hou, L. 2019. Blue light alleviates ‘red light syndrome’ by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber. Scientia Horticulturae. 257: 108680. https://doi.org/10.1016/j.scienta.2019.108680

Mercado, J.A., Fernández-Muñoz, R.F. y Quesada, M.A. 1994. In vitro germination of pepper pollen in liquid medium. Scientia Horticulturae. 57: 273-281. https://doi.org/10.1016/0304-4238(94)90110-4

Naznin, M.T., Lefsrud, M., Gravel, V. y Azad, M.O.K. 2019. Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants. 8(4): 93. https://doi.org/10.3390/plants8040093

Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J.A., Stanghellini, C., Marcelis, L.F.M., Orsini, F. y Gianquinto, G. 2019. Unraveling the role of red: blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Frontiers in Plant Science. 10: 305. https://doi.org/10.3389/fpls.2019.00305

Pérez-Pastrana, J., Islas-Flores, I., Bárány, I., Álvarez-López, D., Canto-Flick, A., Canto-Canché, B., Peña-Yama, L., Muñoz- Ramírez, L., Avilés-Viñas, S., Testillano, P.S. y Santana-Buzzy, N. 2018. Development of the ovule and seed of Habanero chili pepper (Capsicum chinense Jacq.): Anatomical characterization and immunocytochemical patterns of pectin methyl-esterification. Journal of Plant Physiology. 230: 1-12. https://doi.org/10.1016/j.jplph.2018.08.005

Pocock, T. 2015. Light-emitting diodes and the modulation of specialty crops: light sensing and signaling networks in plants. HortScience. 50(9): 1281-1284. https://dx.doi.org/10.21273/HORTSCI.50.9.1281

Ruiz-Lau, N., Medina, F. y Martínez, M. 2011, El chile habanero: su origen y usos. Ciencia. Julio-Septiembre: 70-77.

Sakuraba, Y., Kanno, S., Mabuchi, A., Monda, K., Iba, K. y Yanagisawa, S. 2018. A phytochrome-B-mediated regulatory mechanism of phosphorus acquisition. Nature plants. 4: 1089-1101. https://dx.doi.org/10.1038/s41477-018-0294-7

Sakuraba, Y., y Yanagisawa, S. 2017. Light signalling-induced regulation of nutrient acquisition and utilisation in plants. Seminars in Cell & Developmental Biology. 83: 123-132. https://doi.org/10.1016/j.semcdb.2017.12.014

Samuolienė, G., Sirtautas, R., Brazaitytė, A. y Duchovskis, P. 2012. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chemistry. 134(3): 1494-1499. http://dx.doi.org/10.1016/j.foodchem.2012.03.061

SAS Institute (2002) SAS System for Windows Computer Program. Software Version 9.0. Cary, North Carolina, USA.

Singleton, V.L. y Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Society for Enology and Viticulture. 16: 144-158.

Trujillo, J.J.G. 2018. Caracterización de los recursos genéticos de Capsicum chinense Jacq. en la peninsula de Yucatán. En: Mejoramiento genético del chile habanero de la Península de Yucatán. T.A. González (ed.), pp 37-43. Centro de Investigación Científica de Yucatán. Mérida, México.

Verma, S.K., Gantait, S., Jeong, B.R. y Hwang, S.J. 2018. Enhanced growth and cardenolides production in Digitalis purpurea under the influence of different LED exposures in the plant factory. Nature Scientific Reports. 8: 18009. https://doi.org/10.1038/s41598-018-36113-9

Wang, J., Lu, W., Tong, Y. y Yang, Q. 2016. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Frontiers in Plant Science. 7: 250. https://doi.org/10.3389/fpls.2016.00250

Wollanger, H.M. y Runkle, E.S. 2015. Growth and acclimation of impatiens, salvia, petunia, and tomato seedlings to blue and red light. HortScience. 50(4): 522-529. https://doi.org/10.21273/HORTSCI.50.4.522

Yamori, W. 2016. Photosynthesis and respiration. En: Plant factory: An indoor vertical farming system for efficient quality food production. T. Kozai, G. Niu y M. Takagaki (ed.), pp 141-149. Academic Press, USA. https://dx.doi.org/10.1016/B978-0-12-801775-3.0009-3(LAI)

Descargas

Publicado

2021-01-25

Cómo citar

Mendoza Paredes, J. E., Castillo-González, A. M., Avitia-García, E., García-Mateos, M. del R., & Valdéz-Aguilar, L. A. (2021). Efecto de diferentes proporciones de luz LED azul:roja en plantas de chile habanero (Capsicum chinense Jacq.). Biotecnia, 23(1), 110–119. https://doi.org/10.18633/biotecnia.v23i1.1288

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.