Respuesta de cilantro (Coriandrum sativum L.) a la luz LED azul y roja

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v23i2.1340

Palabras clave:

Coriandrum sativum L., cilantro, luz LED, ambiente controlado

Resumen

El cilantro es una especie ampliamente aceptada debido a usos culinarios y propiedades medicinales. Este podría desarrollarse en ambiente controlado con iluminación LED y permitiría tener una producción continua, con un aumento exponencial de rendimiento y estar libre de plagas y enfermedades. Hay poca investigación sobre la respuesta del cilantro en tales condiciones. Los objetivos fueron evaluar el efecto de cinco proporciones de luz LED azul:roja sobre parámetros de crecimiento en planta, concentración de pigmentos fotosintéticos y nutrimental en la parte aérea de cilantro ‘Gladiador’ bajo condiciones controladas de crecimiento. Los resultados se ajustaron a una regresión polinomial de tercer grado. Una proporción de luz azul (A) y roja (R) de A37.7 %:R62.3 % promovió los parámetros de crecimiento y concentración de pigmentos fotosintéticos, mientras que una proporción de luz azul y roja de A57.7 %:R42.3 % promovió la concentración nutrimental en la parte aérea de cilantro. Lo anterior permite deducir que para una posible producción comercial de cilantro, en condiciones de ambiente controlado, la mejor proporción de luz azul y roja es de A37.7 %:R62.3 % ya que se promueve el crecimiento y por lo tanto el rendimiento comercial.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jorge Enrique Mendoza Paredes, Universidad Autónoma Chapingo

Doctorado en Ciencias en Horticultura, UACh (En finalización)

Maestría en Ciencias en Horticultura, UACh

Citas

Amoozgar, A., Mohammadi, A. y Sabzalian, M.R. 2017. Impact of light-emitting diode irradiation on the photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica. 55: 85-95. https://doi.org/10.1007/s11099-016-0216-8.

Alcántar, G. y Sandoval, M. 1999. Manual de analisis quimico de tejido vegetal. Publicación especial 10. Sociedad Mexicana de la Ciencia del Suelo, A. C. Estado de Mexico, Mexico.

Álvarez-Carvajal, F., González-Soto, T., Armenta-Calderón, A.D., Méndez-Ibarra, R., Esquer-Miranda, E., Juárez, J. y Encinas-Basurto, D. 2020. Silver nanoparticles coated with chitosan against Fusarium oxysporum causing the tomato wilt. Biotecnia. 22(3): 73-80. https://doi.org/10.18633/biotecnia.v22i3.952.

Agarwal, A., Gupta, S.D., Barman, M. y Mitra, A. 2018. Photosynthetic apparatus plays a central role in photosensitive physiological acclimations affecting spinach (Spinacia oleracea L.) growth in response to blue and red photon flux ratios. Environmental and Experimental Botany. 156: 170-182. https://doi.org/10.1016/j.envexpbot.2018.09.009.

AOAC. 1980. Official methods of analysis. 12th ed. Association of Official Analytical Chemistry. Washington, D.C.

Clarenc-Aarland, R., Castellanos-Hernández, O.A., Rodríguez-Sahagún, A. y Acevedo-Hernández, G.J. 2020. Efecto del estrés salino sobre la morfología y fotoquímica de orégano mexicano (Lippia graveolens Kunth) cultivado in vitro. Biotecnia. 22(3): 131-137. https://doi.org/10.18633/biotecnia.v22i3.1223.

Craver, J.K., Boldt, J.K. y Lopez, R.G. 2018. Radiation intensity and quality from sole-source light-emitting diodes affect seedling quality and subsequent flowering of long-day bedding plant species. HortScience, 53(10): 1407-1415. https://dx.doi.org/10.21273/HORTSCI13228-18.

Berkovich, Y.A., Konovalova, I.O., Smolyanina, S.O., Erokhin, A.N., Avercheva, O.V., Bassarskaya, E.M., Kochetova, G.V., Zhigalova, T.V., Yakovleva, O.S. y Tarakanov, I.G. 2017. LED crop illumination inside space greenhouses. REACH - Reviews in Human Space Exploration. 6: 11-24. http://dx.doi.org/10.1016/j.reach.2017.06.001.

Blankenship, R.E. 2014. Molecular mechanisms of photosynthesis. 2nd ed. Wiley Blackwell. New Delhi, India. Brazaitytė, A., Vaštakaitė, V., Viršilė, A., Jankauskienė, J., Samuolienė, G., Sakalauskienė, S., Novičkovas, A., Miliauskienė, J. y Duchovskis, P. 2018. Changes in mineral element content of microgreens cultivated under different lighting conditions in a greenhouse. Acta Horticulturae. 1227. https://doi.org/10.17660/ActaHortic.2018.1227.64.

Chang, S., Pu, C., Guan, R., Pu, M. y Xu, Z. 2018.Transcriptional and translational responses of rapeseed leaves to red and blue lights at the rosette stage. Journal of Zhejiang University-SCIENCE B. 19: 581-595. https://doi.org/10.1631/jzus.B1700408.

Clavijo-Herrera, J., van Santen, E. y Gomez, C. 2018. Growth, Water-Use Efficiency, Stomatal Conductance, and Nitrogen Uptake of Two Lettuce Cultivars Grown under Different Percentages of Blue and Red Light. Horticulturae. 4(3): 16. https://doi.org/10.3390/horticulturae4030016.

Demotes-Mainard, S., Perona, T., Corotb, A., Bertheloota, J., Gourrierecb, J.L., Pelleschi-Travierb, S., Crespel, L., Morel, P., Huche-Thelier, L., Boumaza, R., Vian, A., Guerin, V., Leduc, N. y Sakr, S. 2016. Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany. 121: 4-21. http://dx.doi.org/10.1016/j.envexpbot.2015.05.010.

Gangappa, S.N. y Botto, J.F. 2016. The multifaceted roles of hy5 in plant growth and development. Molecular Plant. 9: 1353–1365. https://dx.doi.org/10.1016/j.molp.2016.07.002

Garcia-Caparros, P., Almansa, E.M., Chica, R.M. y Lao, M.T. 2019. Effects of artificial light treatments on growth, mineral composition, physiology, and pigment concentration in Dieffenbachia maculate “Compacta” plants. Sustainability. 11: 2867. https://dx.doi.org/10.3390/su11102867.

Gerovac, J.R., Craver, J.K., Boldt, J.K. y Lopez, R.G. 2016. Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens. HortScience. 51(5): 497-503. https://doi.org/10.21273/HORTSCI.51.5.497.

Gupta, S. D. y Pradhan, S. 2017. Regulation of gene expression by LED lighting. En: Light Emitting Diodes for Agriculture. S. D. Gupta (ed.), pp 237-258. Springer Nature Singapore, Singapore. https://doi.org/10.1007/978-981-10-5807-3_10.

Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Moller, I. S. y White, P. 2012. Functions of macronutrients. En: Marschner’s Mineral Nutrition of Higher Plants. P. Marschner (ed.), pp 135-189. Academic Press, USA. https://dx.doi.org/10.1016/B978-0-12-384905-2.00006-6.

Hernández, R., Eguchib, T., Devecic, M. y Kubota, C. 2016. Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool White fluorescent lamps. Scientia Horticulturae. 213: 270-280. http://dx.doi.org/10.1016/j.scienta.2016.11.005.

Hernández, R. y Kubota, C. 2016. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany. 121: 66-74. http://dx.doi.org/10.1016/j.envexpbot.2015.04.001.

Hoagland, D.R. y Arnon, D.I. 1950. The water-culture method for growing plants without soil. Circular 347. California Agricultural Experiment Station. California, USA.

Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W. y Harbinson, J. 2010. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany. 61(11): 3107-3117. http://dx.doi.org/10.1093/jxb/erq132.

Hong, Y., Huang, H. y Dai, S. 2015. An in vivo study of the best light emitting diode (LED) systems for cut chrysanthemums. Open Life Sciences. 10: 310-321. https://doi.org/10.1515/biol-2015-0031.

Hosseini, A., Mehrjerdi, M.Z., Aliniaeifard, S. y Seif, M. 2019. Photosynthetic and growth responses of green and purple basil plants under different spectral compositions. Physiology and Molecular Biology of Plants.25:741-752. https://doi.org/10.1007/s12298-019-00647-7.

Huche-Thelier, L., Crespel, L., Gourrierec, J.L., Morel, P., Sakr, S. y Leduc, N. 2016. Light signaling and plant responses to blue and UV radiations—Perspectives for applications in horticulture. Environmental and Experimental Botany. 121: 22-38. https://dx.doi.org/10.1016/j.envexpbot.2015.06.009.

Katagiri, F., Canelon-Suarez, D., Griffin, K., Petersen, J., Meyer, R.K. y Siegle, M. 2015. Design and construction of an inexpensive homemade plant growth chamber. PLoS ONE. 10(5): e0126826. https://doi.org/10.1371/journal.pone.0126826.

Kopsell, D. A. y Sams, C. E. 2013. Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. Journal of the American Society for Horticultural Science. 138(1): 31-37. https://doi.org/10.21273/JASHS.138.1.31.

Kopsell, D. A., Sams, C. E., Barickman, T. C. y Morrow, R. C. 2014. Sprouting broccoli accumulate higher concentrations of nutritionally important metabolites under narrow-band light-emitting diode lighting. Journal of the American Society for Horticultural Science. 139(4): 469-477. https://doi.org/10.21273/JASHS.139.4.469.

Kozai, T. y Niu, G. 2016. Role of the plant factory with artificial lighting (PFAL) in urban areas. En: Plant factory: An indoor vertical farming system for efficient quality food production. T. Kozai, G. Niu y M. Takagaki (ed.), pp 115-128. Academic Press, USA. https://dx.doi.org/10.1016/B978-0-12-801775-3.00002-0.

Kubota, C. 2016. Growth, development, transpiration and translocation as affected by abiotic environmental factors. En: Plant factory: An indoor vertical farming system for efficient quality food production. T. Kozai, G. Niu y M. Takagaki (ed.), pp 151-164. Academic Press, USA. http://dx.doi.org/10.1016/B978-0-12-801775-3.00010-X.

Laribi, B., Kouki, K., M’Hamdi, M. y Bettaieba, T. 2015. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia. 103: 9-26. http://dx.doi.org/10.1016/j.fitote.2015.03.012.

Mahendra, P. y Bisht, S. 2011. Coriandrum sativum: A daily use spice with great medicinal effect. Pharmacognosy Journal. 3(21): 84-88. http://dx.doi.org/10.5530/pj.2011.21.16.

Márquez-Reyes, J.M., Valdés-González, A., García-Gómez, C., Rodríguez-Fuentes, H., Gamboa-Delgado, J. y Luna-Olvera, H. 2020. Evaluación de los efectos sinérgicos de cromo y plomo durante el proceso de fitorremediación con berro (Nasturtium officinale) en un humedal artificial. Biotecnia. 22(2): 171-178. https://doi.org/10.18633/biotecnia.v22i2.1259.

McCree, K.J. 1972. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology. 9: 191-216. https://doi.org/10.1016/0002-1571(71)90022-7.

Metallo, R. M., Kopsell, D. A., Sams, C. E. y Bumgarner, N. R. 2018. Influence of blue/red vs. white LED light treatments on biomass, shoot morphology, and quality parameters of hydroponically grown kale. Scientia Horticulturae. 235: 189-197. https://doi.org/10.1016/j.scienta.2018.02.061

Miao, Y., Chen, Q., Qu, M., Gao, L. y Hou, L. 2019. Blue light alleviates ‘red light syndrome’ by regulating chloroplast ultrastructure, photosynthetic traits and nutrient accumulation in cucumber. Scientia Horticulturae. 257: 108680. https://doi.org/10.1016/j.scienta.2019.108680

Naznin, M. T., Lefsrud, M., Gravel, V., & Hao, X. (2016). Different ratios of red and blue LED light effects on coriander productivity and antioxidant properties. Acta Horticulturae. 1134: 223-230. https://dx.doi.org/10.17660/ActaHortic.2016.1134.30

Nguyen, D. T. P., Lu, N., Kagawa N. y Takagaki, M. 2019. Optimization of photosynthetic photon flux density and root-zone temperature for enhancing secondary metabolite accumulation and production of coriander in plant factory. Agronomy. 9(5): 224. https://doi.org/10.3390/agronomy9050224.

Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J.A., Stanghellini, C., Marcelis, L.F.M., Orsini, F. y Gianquinto, G. 2019. Unraveling the role of red:blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Frontiers in Plant Science. 10: 305. https://doi.org/10.3389/fpls.2019.00305

Pocock, T. 2015. Light-emitting diodes and the modulation of specialty crops: light sensing and signaling networks in plants. HortScience. 50(9): 1281-1284. https://dx.doi.org/10.21273/HORTSCI.50.9.1281.

Prachayasittikul, V., Prachayasittikul, S., Ruchirawat, S. y Prachayasittikule, V. 2018. Coriander (Coriandrum sativum): A promising functional food toward the well-being. Food Research International. 105: 305-323. https://doi.org/10.1016/j.foodres.2017.11.019.

Sakuraba, Y., Kanno, S., Mabuchi, A., Monda, K., Iba, K. y Yanagisawa, S. 2018. A phytochrome-B-mediated regulatory mechanism of phosphorus acquisition. Nature plants. 4: 1089-1101. https://dx.doi.org/10.1038/s41477-018-0294-7.

Sakuraba, Y. y Yanagisawa, S. 2018. Light signalling-induced regulation of nutrient acquisition and utilisation in plants. Seminars in Cell & Developmental Biology. 83: 123-132. https://doi.org/10.1016/j.semcdb.2017.12.014.

SAS Institute (2002) SAS System for Windows Computer Program. Software Version 9.0. Cary, North Carolina, USA.

Shengxin, C., Chunxia, L., Xuyang, Y., Song, C., Xuelei, J., Xiaoying, L., Zhigang, X. y Rongzhan, G. 2016. Morphological, photosynthetic, and physiological responses of rapeseed leaf to different combinations of red and blue lights at the rosette stage. Frontiers in Plant Science. 7: 1144. https://doi.org/10.3389/fpls.2016.01144.

Verma, S.K., Gantait, S., Jeong, B.R. y Hwang, S.J. 2018. Enhanced growth and cardenolides production in Digitalis purpurea under the influence of different LED exposures in the plant factory. Nature Scientific Reports. 8: 18009. https://doi.org/10.1038/s41598-018-36113-9.

Wei, J-N., Liu, Z-H., Zhao, Y-P., Zhao, L-L., Xue, T-K. y Lan, Q-K. 2019. Phytochemical and bioactive profile of Coriandrum sativum L. Food Chemistry. 286: 260-267. https://doi.org/10.1016/j.foodchem.2019.01.171.

Yoneda, Y., Nakashima, H., Miyasaka, J., Ohdoi, K. y Shimizu, H. 2017. Impact of blue, red, and far-red light treatments on gene expression and steviol glycoside accumulation in Stevia rebaudiana. Phytochemistry. 137: 57-65. https://doi.org/10.1016/j.phytochem.2017.02.002.

Viršilė, A., Olle M. y Duchovskis, P. 2017. LED Lighting in Horticulture. En: Light Emitting Diodes for Agriculture. S.D. Gupta (ed.), pp 113-147. Springer Nature Singapore, Singapore. https://doi.org/10.1007/978-981-10-5807-3_7.

Wollaeger, H.M. y Runkle, E.S. 2015. Growth and acclimation of impatiens, salvia, petunia, and tomato seedlings to blue and red light. HortScience. 50(4): 522-529. https://doi.org/10.21273/HORTSCI.50.4.522.

Descargas

Publicado

2021-06-16

Cómo citar

Mendoza Paredes, J. E., Castillo González, A. M., Valdez Aguilar, L. A., Avitia García, E., & García Mateos, M. del R. (2021). Respuesta de cilantro (Coriandrum sativum L.) a la luz LED azul y roja. Biotecnia, 23(2). https://doi.org/10.18633/biotecnia.v23i2.1340

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.