Caracterización fisicoquímica y compuestos bioactivos en el coco (Cocos nucifera L.) y su aceite: Efecto del cultivar y región de cultivo

Autores/as

  • Luis Enrique Robles-Ozuna
  • Yesica yudith Martínez-Núñez
  • María del Refugio Robles-Burgueño
  • Martín Valenzuela-Meléndrez
  • Orlando Tortoledo-Ortíz
  • Tomás Madera-Santana
  • Luz del Carmen Montoya Ballesteros CIAD AC

DOI:

https://doi.org/10.18633/biotecnia.v23i2.1336

Palabras clave:

Coco, compuestos bioactivos, cultivares, región de cultivo.

Resumen

La pulpa y aceite de coco son altamente valorados por los efectos sobre la salud, éstas propiedades son atribuidas a compuestos bioactivos, principalmente a los ácidos grasos de cadena media, compuestos fenólicos y vitamina E. La concentración de los compuestos bioactivos, depende del cultivar, las condiciones bióticas y abióticas de la zona de cultivo. Se determinó el efecto del cultivar y zonas productoras, sobre los compuestos bioactivos en el coco y su aceite. Se analizaron las propiedades fisicoquímicas y los perfiles de componentes bioactivos en cultivares cosechados en Guerrero, Alto Pacifico-saladita, Enano Verde, e Hibrido y de Yucatán, Alto Pacífico-2, Enano Verde. Se encontro que las propiedades fisicoquímicas son diferentes dependiendo de la región de cultivo y el cultivar.  En relación al perfil de ácidos grasos principalmente los ácidos laúrico, mirístico  y palmítico, en los cultivares y las regiones no hay diferencia, pero si en el contenido de compuestos fenólicos y a-tocoferol. El cultivar Enano Verde  de Yucatán, es superior en el contenido de compuestos fenólicos (767.44 mg acido galico/100g), mientras que Alto Pacífico -Saladita en α-tocoferol ( 151.03µg/100g).Estos cultivares podrían significar un gran potencial en el contenido de compuestos fenólicos y α-tocoferol, además de los ácidos grasos de cadena media, en las regiones correspondientes.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ali, L., Alsanius, B., Rosberg, A., Svensson, B., Nielsen, T., Olsson, M. 2012. E ects of nutrition strategy on the levels of nutrients and bioactive compounds in blackberries. Eur. Food Res. Technol. 234 (1), 33-44. https://doi.org/10.1007/s00217-011-1604-8.

Adekola, K., Salleh, A., Zaidan, U., Azlan, A., Chiavaro, E., Paciulli, M., Marikkar, J. 2017. Total phenolic content, antioxidative and antidiabetic properties of coconut (Cocos nucífera L.) testa and selected bean seed coats. Italian Journal of Food Science. 29: 741-753.

Alejo, J. 2015. Evaluación y respuesta a la selección en el rendimiento de copra, de un grupo elite de cocotero criollo“alto del pacifico” (Cocos nucífera l.). Revista de Energía Química y Física. 2: 350-360.

Alves Ferreira, J. A., Santos, J. M., Breitkreitz, M. C., Ferreira, J., Lins, P., Farias, S. C., de Morais, D. R., Eberlin, M. N., y Bottoli, C. 2019. Characterization of the lipid profile from coconut (Cocos nucifera L.) oil of different varieties by electrospray ionization mass spectrometry associated with principal component analysis and independent component analysis. Food Research International, 123:189-197.

Angeles, J. G. C., Lado, J. P., Pascual, E. D., Cueto, C. A., Laurena, A. C., Laude, R. P. 2018. Towards the Understanding of Important Coconut Endosperm Phenotypes: Is there an Epigenetic Control? Agronomy. 8: 225.

AOAC. 2011. Official of Analysis of AOAC International (AOACInternational Ed.). Arlington, VA, USA.

Arivalagan, M., Roy, T., Yasmeen, A., Pavithra, K., Jwala, P., Shivasankara, K., Manikantan, M., Hebbar, K., Kanade, S. 2018. Extraction of phenolic compounds with antioxidant potential from coconut (Cocos nucifera L.) testa and identification of phenolic acids and flavonoids using UPLC coupled with TQD-MS/MS. LWT Food Science and Technology. 92: 116-126.

Balleza, C., Sierra, Z. 1976. Proximate analysis of the coconut endosperm in progressive stages of development. Philippine Journal of Coconut Studies 16: 37-46.

Banzon, I. 1990. Coconut as Food. In The coconut palm and its fruit. I. Banzon, O. Gonzalez, S. Leon, & P. Sanchez (Eds.). Quezon City, Phillippines. Phillippines Coconut Research and Development Foundation. pp. 3-7.

Bligh, E. G., Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology. 37: 911-917.

Canapi, E. C., Augustin, Y., Moro, E., Pedrosa, E., Bendano, M. 2005. Coconut Oil. In Bailey’s industrial oil and fat products, edible oils and fat products. F. Shahidi (Ed.), (6th ed.). USA. John Wiley & Sons. pp. 97-124.

Chadha, K.L., Shikhamany, S.D., 1999. The Grape Improvement, Production and Post- harvest Management. Malhotra Publishing House, New Delhi 579p.

CODEX-STAN. 1999. 210-1999: Norma para aceites vegetales especificados.

Enig, M. 2001. Coconut: In Support of Good Health in the 21st Century P (www.apccsec.org/document/ENIG.pdf). Am. J. Clin. Nutr. 1-27.

Eyres, L., Eyres, M. F., Chisholm, A., Brown, R. C. 2016. Coconut oil consumption and cardiovascular risk factors in humans. Nutrition Reviews. 74: 267-280.

Finimundy T. , A. Karkanis, Â. Fernandes, S. Petropoulos, R. Calhelha, J. Petrović, M. Soković, E. Rosa, L. Barros, I. Ferreira. 2020. Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes Food Chemistry 327, 127043

Ferreira, J. A., Santos, J. M., Breitkreitz, M. C., Ferreira, J. M. S., Lins, P. M. P., Farias, S. C., de Morais, D. R., Eberlin, M. N., Bottoli, C. B. G. 2019. Characterization of the lipid profile from coconut (Cocos nucifera L.) oil of different varieties by electrospray ionization mass spectrometry associated with principal component analysis and independent component analysis. Food Research International. 123: 189-197.

Hilditch TP, Williams PN. 1964. Chemical Constitution of Natural Fats, p.207, Chapman and Hall, London. Jackson, A. Gordon, G. Wizzard, K. McCook y R. Rolle. 2004. Changes in chemical composition of coconut (Cocos nucifera) water during maturation of the fruit. J Sci Food Agric 84:1049-1052.

Kumar, Balakrishna, A. 2009. Seasonal variations in fatty acid composition of oil in developing coconut. Journal of Food Quality. 32: 158-176.

Kumar, S. 2011. Variability in coconut (Cocos nucifera L.) germplasm and hybrids for fatty acid profile of oil. Journal of Agricultural and Food Chemistry. 59: 13050-13058.

Lamdande A., M. Prakash, K. Raghavarao. 2018. Storage study and quality evaluation of fresh coconut grating. J Food Process Preserv. 2018;42:e13350.

Lee, S. K., Kader, A. A. 2000. Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology. 20: 207-220.

Leorna, M., Israel, K. 2018. The influence of maturity of VMAC5 (Cocos nucifera L.‘makapuno’) on its physicochemical, proximate composition and fatty acid profile. Earth and Environmental Science. 102: 012098.

Lizano, M., Salazar, R., Moreira, Z., Brenes, G. 2018. Guia técnica del cultivo del coco. Ministerio de Agricultura y Ganadería de El Salvador. Instituto Interamericano de Cooperación para la Agriculturap 14-15.

Lee, K. W.; Lip, G. H. H. 2003. The role of omega 3 fatty acid in the secondary prevention of cardiovascular disease. Int. J. Med., 97, 465-480.

Luengwilai, K., Beckles, D. M., Pluemjit, O., Siriphanich, J. 2014. Postharvest quality and storage life of ‘Makapuno’coconut (Cocos nucifera L.). Scientia Horticulturae. 175: 105-110.

Marina, A., Che Man, Y., Nazimah, S., Amin, I. 2009. Antioxidant capacity and phenolic acids of virgin coconut oil. International Journal of Food Sciences and Nutrition. 60: 114-123.

Mansor, T, Y.B. Che Man, M. Shuhaimi, M.J. Abdul Afiq, F.K.M. Nurul. 2012. Physicochemical properties of virgin coconut oil extracted from different processing methods. International Food Research Journal 19 (3), 837-845.

Michalska A., A. Wojdyło, B. Bogucka. 2016. The influence of nitrogen and potassium fertilisation on the content of polyphenolic compounds and antioxidant capacity of coloured potato Journal of Food Composition and Analysis 47 (2016) 69-75

Mustafa H., N. Batool, Z. Iqbal, E. Hasan and T. Mahmood. 2015. Effect of Fruit Position and Variable Temperature on Chemical Composition of Seeds in Brassica, Cotton, Sunflower and Maize Crops Researcher 7(11).

Nandi S, S. Gangopadhyay, S. Ghosh. 2005. Production of medium chain glycerides from coconut and palm kernel fatty acid distillates by lipase- catalyzed reaction. Enzyme and Microbial Technology 36, 725-728.

Nevin, K., Rajamohan, T. 2004. Beneficial effects of virgin coconut oil on lipid parameters and in vitro LDL oxidation. Clinical Biochemistry. 37: 830-835.

Nevin, K., Rajamohan, T. 2006. Virgin coconut oil supplemented diet increases the antioxidant status in rats. Food Chemistry. 99: 260-266.

Oropeza, C., Cordova, I., Chumba, A., Narvaez, M., Saenz, L., Ashburner, R., Harrison, N. 2011. Phytoplasma distribution in coconut palms affected by lethal yellowing disease. Annals of Applied Biology. 159: 109-117.

Padilha, H. K. M., Pereira, E. d. S., Munhoz, P. C., Vizzotto, M., Valgas, R. A., Barbieri, R. L. 2015. Genetic variability for synthesis of bioactive compounds in peppers (Capsicum annuum) from Brazil. Food Science and Technology. 35: 516-523.

Park, P., Goins, R. 1994. In situ preparation of fatty acid methyl esters for analysis of fatty acid composition in foods. Journal of Food Science. 59: 1262-1266.

Petropoulos, S. A., Karkanis, A., Martins, N., & Ferreira, I. C. F. R. 2016. Phytochemical composition and bioactive compounds of common purslane (Portulaca oleracea L.) as affected by crop management practices. Trends in Food Science & Technology, 55, 1-10. https://doi.org/10.1016/j.tifs.2016.06.010.

Petropoulos, S. A., Fernandes, Â., Vasileios, A., Ntatsi, G., Barros, & I. Ferreira. 2018. Chemical composition and antioxidant activity of Cichorium spinosum L. leaves in relation to developmental stage. Food Chemistry, 239, 946–952. https://doi.org/10.1016/j.foodchem.2017.07.043.

Pola, W., Sugaya, S., Photchanachai, S. 2020. Influence of ostharvest temperatures on carotenoid biosynthesis and phytochemicals in mature green chili (Capsicum annuum L.). Antioxidants. 9: 203.

Roopan, S. M. 2016. An overview of phytoconstituents, biotechnologi- cal applications, and nutritive aspects of coconut (Cocos nucifera). Applied Biochemistry and Biotechnology, 179(8), 1309-1324. doi: 10.1007/s12010-016-2067-y

Rasheed, H. M., Khan, T., Wahid, F., Khan, R., Shah, A. J. 2015. Chemical composition and vasorelaxant and antispasmodic effects of essential oil from Rosa indica L. petals. Evidence-Based Complementary and Alternative Medicine. 2015: 1-9.

Romojaro, F., Martínez-Madrid, M., Pretel, M.T. 2006. Factores precosecha determi- nantes de la calidad y conservación de productos agrarios. V Simposio Ibérico VIII Nacional De Maduración Y Postrecolección. Orihuela Alicante, España, pp. 91-96.

SAGARPA. 2014. Guia Tecnica para la descripcion varietal de cocotero (Cocos nucifera L.).

Salunkhe, D., Kadam, S. 1995. Handbook of fruit science and technology: production, composition, storage, and processing. New York, USA CRC press.

Sammy S. R., B. Freire de Aquino y J. Duarte de Freitas. 2008. Evaluación de la producción de palma de coco (Cocos nucifera) bajo fertirrigación con diferentes dosis de nitrógeno y potasio. Agronomía Colombiana 26(1), 127-133

SIAP. 2017. Estadísticas de producción agrícola. Gobierno de México.

SIAP. 2019. Estadísticas de producción agrícola. Gobierno de México.

Singleton V.L., Rossi J.A. 1965. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J Enol Viticult 16: 144-158.

Tremolieres A, Dubacq JP, Drapier D. 1982. Unsaturated fatty acids in maturing seeds of sunflower and rape: regulation by temperature and light intensity. Phytochemistry 21: 41 - 45.

USDA. 2020. United States Department of Agriculture. Retrieved from https://plants.usda.gov

Wahyuni, Y., Ballester, A.-R., Sudarmonowati, E., Bino, R. J., Bovy, A. G. 2013. Secondary metabolites of Capsicum species and their importance in the human diet. Journal of Natural Products. 76: 783-793.

Yin X, X. Fu, H. Cheng, Wusigale, L. Liang. 2020. α-Tocopherol and naringenin in whey protein isolate particles: Partition, antioxidant activity, stability and bioaccessibility. Food Hydrocolloids 106 (2020) 105895

Zhu Y., Kerry L. Wilkinson, M. Wirthensohn. 2017 Changes in fatty acid and tocopherol content during almond (Prunus dulcis, cv. Nonpareil) kernel development . Scientia Horticulturae 225:150–155

Descargas

Publicado

2021-06-16

Cómo citar

Robles-Ozuna, L. E., Martínez-Núñez, Y. yudith, Robles-Burgueño, M. del R., Valenzuela-Meléndrez, M., Tortoledo-Ortíz, O., Madera-Santana, T., & Montoya Ballesteros, L. del C. (2021). Caracterización fisicoquímica y compuestos bioactivos en el coco (Cocos nucifera L.) y su aceite: Efecto del cultivar y región de cultivo. Biotecnia, 23(2), 22–29. https://doi.org/10.18633/biotecnia.v23i2.1336

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

<< < 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.