Orujo de Uva y su efecto en el desempeño productivo y su microbiota intestinal en cerdos finalizadores

Authors

  • Kevin Alberto Avilés Peterson Centro de Investigación en Alimentación y Desarrollo
  • Maricela Montalvo Corral Centro de Investigación en Alimentación y Desarrollo
  • Humberto González Ríos Centro de Investigación en Alimentación y Desarrollo
  • Hector Parra Sánchez Centro de Investigación en Alimentación y Desarrollo
  • Miguel Angel Barrera Silva Departamento Agricultura y Ganadería. Universidad de Sonora
  • Araceli Pinelli Saavedra Centro de Investigación en Alimentación y Desarrollo

DOI:

https://doi.org/10.18633/biotecnia.v26.2177

Keywords:

grape pomace, gut microbiota, productive performance, pigs

Abstract

The objective of the work was to evaluate the effect of grape pomace (GP) supplementation on the intestinal microbiota and the productive performance of finishing pigs. Twenty male finishing pigs (Duroc x Yorkshire, initial live weight of 80 kg) were used, housed individually in pens provided with drinkers and feeders. The feed experimental phase lasted 31 d, and ten animals were randomly assigned to each treatment: Control (commercial diet (BD) without GP) and GP (BD + 25 g GP/kg). Productive performance was evaluated by daily weight gain, daily feed intake and feed conversion. Changes in the composition and abundance of the microbiota were evaluated by qPCR on stool samples.  GP supplementation significantly (p < 0.05) increased feed intake and weight gain but showed no effect on feed conversion (p > 0.05).  Regarding the microbiota, supplementation had no effect (p > 0.05) on the genera Lactobacillus spp, Faecalibacterium praustnitzi and E. coli, but Campylobacter spp. increased (p < 0.05). The results on intestinal microbiota were not expected; however, a positive effect on weight gain was found, allowing for shortening production times.

 

Downloads

Download data is not yet available.

Author Biography

Araceli Pinelli Saavedra, Centro de Investigación en Alimentación y Desarrollo

Investigador titular "C"

SNI

References

AOAC. 2005. Official method of Analysis. 18th Edition, Association of Officiating Analytical Chemists, Washington D.C.

Almeida, D., Machado, D., Andrade, J.C., Mendo, S., Gomes, A.M., Freitas, A.C. 2020. Evolving trends in next-generation probiotics: a 5W1H perspective. Critical Review in Food Science and Nutrition. 60(11):1783-1796. DOI: https://doi.org/10.1080/10408398.2019.1599812

Alter, T., Gaull F., Kasimir S., Gürtler M., Mielke H., Linnebur M., Fehlhaber K. 2005. Prevalences and transmission routes of Campylobacter spp. Strains within multiple pig farms. Veterinary Immunolo-gy. 108(3-4): 251-261. DOI: https://doi.org/10.1016/j.vetmic.2005.03.004

Balbinoti, T.C.V., Stafussa, A.P., Haminiuk, C.W.I., Maciel, G.M., Sassaki, G.L., Jorge L.M.D.M. y Jorge R.M.M. 2020. Addition of grape pomace in the hydration step of parboiling increases the anti-oxidant properties of rice. International Journal of Food Science and Technology. 55(6): 2370-2380. DOI: https://doi.org/10.1111/ijfs.14481

Bergamaschi, M., Tiezzi, F., Howard, J., Huang, J.Y., Kent, A. G. Schillebeeckx, C., McNulty, N. P., y Maltecca, C. 2020. Gut microbiome composition differences among breeds impact feed efficiency in swine. Microbiome 8 (110): 1-15 DOI: https://doi.org/10.1186/s40168-020-00888-9

Bin, P., Tang, Z., Liu, S. Chen, S., Xia, Y., Liu, J., Wu, H., y Zhu, G. 2018. Intestinal microbiota mediates Enterotoxigenic Escherichia coli-induced diarrhea in piglets. BMC Veterinary Research 14(385): 1-13. DOI: https://doi.org/10.1186/s12917-018-1704-9

Broom, L. J. 2018. Gut barrier function: effects of (antibiotic) growth promoters on key barrier components and associations with growth performance. Poultry Science. 97(5): 1572-1578. DOI: https://doi.org/10.3382/ps/pey021

Carlson, M.S. y Fangman, T.J. 2018. Swine antibiotics and feed additives: food safety considerations. De-partment of Animal Sciences, University of Missouri-Columbia.

Casagrande, M., Zanela, J., Pereira, D., de Lima, V.A., Oldoni, T.L.C. y Carpes, S.T. 2019. Optimization of the extraction of antioxidant phenolic compounds from grape pomace using response surface methodology. Journal of Food Measurement and Characterization. 13(2):1120–1129. DOI: https://doi.org/10.1007/s11694-018-00027-x

Chedea, V.S., Palade, L.M., Marin, D.E., Pelmus, R.S., Habeanu, M., Rotar, M.C., Gras, M.A., Pistol, G.C. y Taranu I. 2018. Intestinal absorption and antioxidant activity of grape pomace polyphe-nols. Nutrients. 10(5): 588. DOI: https://doi.org/10.3390/nu10050588

Choy, Y.Y., Quifer-Rada, P., Holstege, D.M., Frese S.A., Calvert,, C.C., Mills D.A., Lamuela-Raventos, R.M. y Waterhouse, A.L. 2014. Phenolic metabolites and substantial microbiome changes in pig fe-ces by ingesting grape seed proanthocyanidins. Food & Function. 5(9): 2298-2308. DOI: https://doi.org/10.1039/C4FO00325J

CODEX. 1997. Límites máximos del codex para residuos de medicamentos veterinarios. [ Consultado 12 de Septiembre del 2022]. Disponible en: http:www.apps1.fao.org.

CORDIS. 2022. [Consultado 12 de Marzo 2023]. Disponible en: https://cordis.europa.eu/article/id/20620-regulation-bans-antibiotics-as-growth-promoters-in-animal-feed/es .

De Rodas, B., Youmans, B.P., Danzeisen, J.L., Tran, H. y Johnson, T.J. 2018. Microbiome profiling of commercial pigs from farrow to finish. Journal of Animal Science. 96(5): 1778-1794. DOI: https://doi.org/10.1093/jas/sky109

Echegaray, N., Munekata, P.E.S., Centeno, J.A., Pateiro, M., Carballo, J. y Lorenzo, J.M. 2021. Total phe-nol content and antioxidant activity of different celta pig carcass locations as affected by the finishing diet (chestnuts or commercial feed). Antioixidants. 10(5):1–19. DOI: https://doi.org/10.3390/antiox10010005

Fleckenstein, J.M., Hardwidge, P.R., Munson, G.P., Rasko, D.A. 2010. Sommerfelt H, Steinsland H. Mo-lecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes & Infection. 12(2):89–98. DOI: https://doi.org/10.1016/j.micinf.2009.10.002

Furet, J.P., Firmesse, O., Gourmelon, M., Bridonneau, C., Tap, J., Mondot, S., Doré, J. y Corthier, G. 2009. Comparative assessment of human and farm animal faecal microbiota using real-time quantita-tive PCR. FEMS Microbiology Ecology. 68(3): 351-362. DOI: https://doi.org/10.1111/j.1574-6941.2009.00671.x

Gardiner, G.E., Metzler-Zebeli, B.U., Lawlor, P.G. 2020. Impact of Intestinal Microbiota on Growth and Feed Efficiency in Pigs: A Review. Microorganisms. 28;8(12):1886. DOI: https://doi.org/10.3390/microorganisms8121886

Grosu, I. A., Pistol, G.C., Marin, D.E., Cismileanu, A., Palade. L.M., y Taranu I., 2020. Effects of dietary grape seed meal bioactive compounds on the colonic microbiota of weaned piglets with dextran sodi-um sulfate-induced colitis used as an inflammatory model. Frontier Veterinary Science. 7(31):1-14 DOI: https://doi.org/10.3389/fvets.2020.00031

Guevarra, R.B., Hong, S.H., Cho, J.H., Kim, B.R., Shin, J., Lee, J.H., Kang, B.N., Kim, Y.H., Wattana-phansak, S., Isaacson, R.E., Song, M. y Kim H.B. 2018. The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition. Journal of Animal Science and Biotechnology. 9(1): 1-9. DOI: https://doi.org/10.1186/s40104-018-0269-6

Halmos, E.P., Christophersen, C.T., Bird, A.R., Shepherd, S.J., Gibson, P.R. y Muir J.G. 2015. Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut. 64(1): 93-100. DOI: https://doi.org/10.1136/gutjnl-2014-307264

Hao, R, Li, Q., Zhao, J., Li, H., Wang, W., Gao, J. 2015. Effects of grape seed procyanidins on growth performance, immune function and antioxidant capacity in weaned piglets. Livestock Science. 17: 237-242 DOI: https://doi.org/10.1016/j.livsci.2015.06.004

Koh, A, De Vadder, F, Kovatcheva-Datchary, P., y Bäckhed F. 2016. From dietary fiber to host physiolo-gy: short-chain fatty acids as key bacterial metabolites. Cell. 65(6):1332-1345 DOI: https://doi.org/10.1016/j.cell.2016.05.041

Hintze, J. 2007. NCSS, PASS y GESS. Number Cruncher Statistical Systems. Kaysville, Utah.

Huijsdens, X.W., Linskens, R.K., Mak, M., Meuwissen, S.G., Vandenbroucke-Grauls, C.M. y Savelkoul P.H. 2002. Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR. Journal of Clinical Microbiology. 40(12)z. 4423-4427. DOI: https://doi.org/10.1128/JCM.40.12.4423-4427.2002

Kaevska,, M., Lorencova, A., Videnska, P., Sedlar, K., Provaznik, I. y Trckova M. 2016. Effect of sodium humate and zinc oxide used in prophylaxis of post-weaning diarrhoea on faecal microbiota composi-tion in weaned piglets. Veterinární Medicína. 61(6): 328-336. DOI: https://doi.org/10.17221/54/2016-VETMED

Kafantaris, I., Stagos, D., Kotsampasi, B., Hatzis, A., Kypriotakis, A., Gerasopoulos, K., Makri, S., Goutzourelas N., Mitsagga, C., Giavasis, I., Petrotos, K., Kokkas,, S., Goulas P., Christodoulou, V. y Kouretas, D. 2018. Grape pomace improves performance, antioxidant status, fecal microbiota and meat quality of piglets. Animal. 12(2): 246-255. DOI: https://doi.org/10.1017/S1751731117001604

Kim, H.B. y Isaacson, R.E. 2015. The pig gut microbial diversity: understanding the pig gut microbial ecol-ogy through the next generation high throughput sequencing. Veterinary Microbiology. 177(3-4): 242-251. DOI: https://doi.org/10.1016/j.vetmic.2015.03.014

Kumanda, C., Mlambo, V. y Mnisi, C.M. 2019. From landfills to the dinner table: Red grape pomace waste as a nutraceutical for broiler chickens. Sustainability. 11(7): 1931. DOI: https://doi.org/10.3390/su11071931

Liu, G., Ren, W., Fang, J., C-AA, H., Guan, G., Al-Dhabi, N.A., Yin, J., Duraipandiyan, V., Chen, S., Peng, Y, et al. 2017. L-glutamine and l-arginine protect against enterotoxigenic Escherichia coli infec-tion via intestinal innate immunity in mice. Amino Acids. 49(12):1945–1954. DOI: https://doi.org/10.1007/s00726-017-2410-9

Livak, K.J. y Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4): 402-408 DOI: https://doi.org/10.1006/meth.2001.1262

Looft, T., Johnson T.A., Allen, H.K., Bayles,, D.O., Alt, D.P., Stedtfeld, R.D., Sul,W.J., Stedfeld, T.M., Chai, B., Cole, J.R., Hashsham, S.A., Tiedje, J.M. y Stanton, T.B. 2012. In-feed antibiotic effects on the swine intestinal microbiome. Proceedings of the National Academy of Sciences. 109(5): 1691-1696. DOI: https://doi.org/10.1073/pnas.1120238109

Luo, Y., Ren, W., Smidt, H., Wright, A.D.G., Yu, B., Schyns G., McCormack, U.M., Cowieson, A.J., Yu, J., He J., Yan, H., Wu J., Mackie, R.I. y Chen, D. 2022. Dynamic distribution of gut microbiota in pigs at different growth stages: composition and contribution. Microbiology Spectrum. 10(3): 1-15 DOI: https://doi.org/10.1128/spectrum.00688-21

McCormack, U. M., Curiao, T., Metzler-Zebeli, B. U., Magowan, E., Berry, D. P., Reyer, H., et al. (2019). Porcine feed efficiency-associated intestinal microbiota and physiological traits: finding consistent cross-locational biomarkers for residual feed intake. mSystems. 4(4):e00324-18 DOI: https://doi.org/10.1128/mSystems.00324-18

Massacci, F. R., Berri, M., Lemonnier, G., Guettier, E., Blanc, F., Jardet, D., y Estellé, J. 2020. Late wean-ing is associated with increased microbial diversity and Faecalibacterium prausnitzii abundance in the fecal microbiota of piglets. Animal Microbiome. 2(1):1-12. DOI: https://doi.org/10.1186/s42523-020-0020-4

Million, M., Angelakis, E., Paul, M., Armougom, F., Leibovici, L. y Raoult, D. 2012. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microbial path-ogenesis. 53(2):100-108. DOI: https://doi.org/10.1016/j.micpath.2012.05.007

National Research Council (NRC) 2012. Nutrient Requirements of Swine: 11th Revised Edition. The Na-tional Academies Press. Washington, DC.

Niu Q, Li P, Hao S, Zhang Y, Kim SW, Li H, Ma, X., Gao, S., He, L., Wu, W., Huang, X., Hua, J., Zhou, B., y Huang, R., et al. 2015. Dynamic distribution of the gut microbiota and the relationship with ap-parent crude fiber digestibility and growth stages in pigs. Science. Report. 5:9938 DOI: https://doi.org/10.1038/srep09938

Norma Oficial Mexicana NOM-051-ZOO-1995, trato humanitario en la movilización de animales. [Consultado 22 Marzo 2022]. Disponible en: http://dof.gob.mx/nota_detalle.php?codigo=4870842&fecha=23/03/1998

Park, Y.K., Ikegaki, M., Abreu, J.A. da S. y Alcici, N.M.F. 1998. Estudo da preparação dos extratos de própolis e suas aplicações. Food Science and Technology. 18(3): 313–318. DOI: https://doi.org/10.1590/S0101-20611998000300011

Pluske, J.R., Miller, D.W., Sterndale, S.O. y Turpin, D.L. 2019a. Associations between gastrointestinal-tract function and the stress response after weaning in pigs. Animal Production Science. 59(11): 2015-2022. DOI: https://doi.org/10.1071/AN19279

Pluske, J. R. y Zentek, J. 2019b. Gut nutrition and health in pigs and poultry. En Poultry and Pig Nutrition. Hendriks, W. H., Verstegen, M. W. A., y Babinszky, L (ed.), pp 77-95. Wageningen Academic Pub-lishers. DOI: https://doi.org/10.3920/978-90-8686-884-1_4

Pomar, C. y Remus, A. 2019. Precision pig feeding: a breakthrough toward sustainability. Animal Fron-tiers. 9(2): 52-59. DOI: https://doi.org/10.1093/af/vfz006

Quan, J., Wu Z, Ye Y, Peng L, Wu J, Ruan D, Qiu Y, Ding R, Wang X, Zheng E, Cai G, Huang W and Yang J .2020. Metagenomic characterization of intestinal regions in pigs with contrasting feed effi-ciency. Frontier Microbiology. 11(32):1-13 DOI: https://doi.org/10.3389/fmicb.2020.00032

Rinttilä, T., Kassinen, A., Malinen, E., Krogius, L. y Palva, A. 2004. Development of an extensive set of 16S rDNA‐targeted primers for quantification of pathogenic and indigenous bacteria in faecal sam-ples by real‐time PCR. Journal of Applied Microbiology. 97(6): 1166-1177. DOI: https://doi.org/10.1111/j.1365-2672.2004.02409.x

Sehm, J., Treutter, D. Lindermayer, H., Meyer, H.H.D., Pfaffl, M.W., 2011. The influence of apple- or red-grape pomace enriched piglet diet on blood parameters, bacterial colonisation, and marker gene expression in piglet white blood cells. Food Nutrition. Science. 2: 366-376 DOI: https://doi.org/10.4236/fns.2011.24052

Singleton, V.L. y Rossi, J.A.J. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Vitivulture. 16: 44–168. DOI: https://doi.org/10.5344/ajev.1965.16.3.144

Taranu, I., Habeanu, M., Gras, M.A., Pistol, G.C., Lefter, N., Palade, M., Ropota, M., Sanda Chedea ,V., Marin, D.E. 2018. Assessment of the effect of grape seed cake inclusion in the diet of healthy fatten-ing-finishing pigs. Journal of Animal Physiology and Animal Nutrition. 102(1): e30-e42. DOI: https://doi.org/10.1111/jpn.12697

Taranu, I., Hermenean, A., Bulgaru, C., Pistol, G.C., Ciceu, A., Grosu, I.A. y Marin D.E. 2020. Diet con-taining grape seed meal by-product counteracts AFB1 toxicity in liver of pig after weaning. Ecotoxi-cology and Environmental Safety. 203: 110899. DOI: https://doi.org/10.1016/j.ecoenv.2020.110899

Tayengwa, T., Chikwanha, O. C., Raffrenato, E., Dugan, M. E., Mutsvangwa, T., & Mapiye, C. 2021. Comparative effects of feeding citrus pulp and grape pomace on nutrient digestibility and utilization in steers. Animal, 15 (1): 100020. DOI: https://doi.org/10.1016/j.animal.2020.100020

Tayengwa, T., Chikwanha, O.C., Dugan, M.E.R., Mutsvangwa, T., Mapiye, C., 2020. Influence of feeding fruit by-products as alternative dietary fibre sources to wheat bran on beef production and quality of Angus steers. Meat Science. 161: 107969. DOI: https://doi.org/10.1016/j.meatsci.2019.107969

Torres-Pitarch, A., Gardiner, G.E., Cormican, P., Rea, M., Crispie, F., O'Doherty, J.V., Cozannet, P., Ryan, T., Cullen, J., Lawlor, P.G. 2020. Effect of cereal fermentation and carbohydrase supplementa-tion on growth, nutrient digestibility and intestinal microbiota in liquid-fed grow-finishing pigs. Sci-ence Reports. 10(1):13716. DOI: https://doi.org/10.1038/s41598-020-70443-x

Verhelst, R., Schroyen, M., Buys, N. y Niewold, T. 2014. Dietary polyphenols reduce diarrhea in entero-toxigenic Escherichia coli (ETEC) infected post-weaning piglets. Livestock Science. 160: 138-140. DOI: https://doi.org/10.1016/j.livsci.2013.11.026

Wang, R., Yu H., Fang, H., Jin, Y., Zhao, Y., Shen, J. y Zhang, J. 2020. Effects of dietary grape pomace on the intestinal microbiota and growth performance of weaned piglets. Archives of Animal Nutri-tion. 74(4): 296-308. DOI: https://doi.org/10.1080/1745039X.2020.1743607

Williams, A.R., Krych, L., Fauzan Ahmad, H., Nejsum, P., Skovgaard, K., Nielsen, D.S. y Thamsborg, S.M. 2017. A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune re-sponses and gut microbiota composition in pigs. PLoS One. 12(10): e0186546. DOI: https://doi.org/10.1371/journal.pone.0186546

World Health Organization. (‎2012)‎. The evolving threat of antimicrobial resistance: options for action. World Health Organization. [Consultado 12 de abril del 2023]. Disponible en: https://apps.who.int/iris/handle/10665/44812.

Yang, H., Huang, X., Fang, S., Xin, W., Huang, L., y Chen, C. 2016. Uncovering the composition of mi-crobial community structure and metagenomics among three gut locations in pigs with distinct fatness. Science Reports 6:27427. DOI: https://doi.org/10.1038/srep27427

Yang, H., Huang X., Fang S., He M., Zhao Y., Wu Z., Yang M., Zhang Z., Chen C., y Huang L. 2017 Unraveling the fecal microbiota and metagenomic functional capacity associated with feed efficiency in pigs. Frontier Microbiology. 8:1555 DOI: https://doi.org/10.3389/fmicb.2017.01555

Young, C.R., Harvey, R., Anderson,, R., Nisbet D., y Stanker, L.H. 2000. Enteric colonisation following natural exposure to Campylobacter in pigs. Research in Veterinary Science. 68(1): 75-78 DOI: https://doi.org/10.1053/rvsc.1999.0335

Graphical abstract

Published

2024-05-02

How to Cite

Avilés Peterson , K. A., Montalvo Corral , M., González Ríos , H., Parra Sánchez , H., Barrera Silva , M. A. ., & Pinelli Saavedra, A. (2024). Orujo de Uva y su efecto en el desempeño productivo y su microbiota intestinal en cerdos finalizadores. Biotecnia, 26, 274–282. https://doi.org/10.18633/biotecnia.v26.2177

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.