Evaluation of the nitrogen cycle in an agricultural soil disturbed with nickel-salphen and zinc-salphen compounds
DOI:
https://doi.org/10.18633/biotecnia.v22i3.1134Keywords:
Ni-salphen, Zn-salphen, agricultural soil, N-cycle, abiotic disturbanceAbstract
Soil ecosystem provides fundamental services as biogeochemical cycle regulation. Nitrogen cycle is managed by the microbiota that it harbors and depends on the stability of the ecosystem to cope abiotic disturbances such as metal and metalloid contamination. High concentrations of nickel (Ni) and zinc (Zn) in agricultural soils are frequently related to the application of conventional farming practices, composting, irrigation and biosolids deposit, as well as wastewater polluted from the mining and thermoelectric industry. To better understand the effects of this kind of abiotic disturbance a microcosm, this study was performed with agricultural soil from the Coast of Hermosillo, Sonora, Mexico and contaminated with Ni (II) and Zn (II) salphen complexes to evaluate their effect on the system, regarding the nitrogen cycle fluxes over time. The results obtained by spectrophotometric analyzes of the inorganic nitrogen pool, atomic absorption and pH revealed that the soil system functioning based on the nitrogen cycle was recovered 240 days after disturbances with M-salphen. This suggest the potential use of NiSB15 as a promoter to increase nitrate concentration at 60 days in conjunction with NiSA15 to increase ammonium concentration in agricultural soils contaminated with heavy metals.
Downloads
References
Aislabie, J. y Deslippe. J.R. 2013. Soil microbes and their contribution to soil services. En: Ecosystem Services in New Zealand-conditions and trends. J.R. Dymond (ed), pp 143–161. Mannaaki Whenua Press, Lincoln., New Zeland.
Ardestani, M.M., van Straalen, N.M. y van Gestel, C.A.M. 2014. Uptake and elimination kinetics of metals in soil invertebrates: a review. Environ Pollut. 193: 277–295.
Azarbad, H., Niklińska, M., Laskowski, R., van Straalen, N.M., van Gestel, C.A.M., Zhou, J., He, Z., Wen, C., Roling, W.F.M. 2015. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiology Ecology 91:1–11.
Bader, N.R. 2010. Applications of schiff´s bases chelates in quantitative analysis: a review. Rasayan J Chem. 3: 660–670.
Cabello, P., Roldan, M.D. y Moreno-Vivian, C. 2004. Nitrate reduction and the nitrogen cycle in archaea. Microbiology. 150: 3527–3546.
Cano-Cruz, M.T. 2018. Estudios de autoensamblaje supramolecular y química anfitrión huésped. MSc dissertation. National Autonomous University of Mexico.
Calderón, K., Spor, A., Breuil, M.C., Bru, D., Bizouard, F., Violle, C., Bernard, R.L. y Philippot, L. 2017. Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME J. 11: 272–283.
Calderón, K., Philippot, L., Bizouard, F. et al. 2018. Compounded disturbance chronology modulates the resilience of soil microbial communities and N-Cycle related functions. Front Microbiol. 6 :2721.
Cota-Ruiz, K., Nuñez-Gastelum, J.A., Delgado-Ríos, M., Martínez- Martínez, A. 2019. Biorremediación: Actualidad de conceptos y aplicaciones. Biotecnia. XXI (1): 37–44.
Daims, H., Lucker, S., Wagner, M. 2016. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24: 699–712.
Das, S., Dash, H.R. y Chakraborty, J. 2016. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol. 100: 2967–2984.
Escárcega-Bobadilla, M.V., Martínez Belmonte, M., Martin, E., Escudero-Adán, E.C. y Kleij, A.W. 2013. A recyclable trinuclear bifunctional catalyst derived from a tetraoxo Bis-Zn(salphen) metalloligand. Chem Eur J. 19: 2641–2648.
Galán Huertos, E. y Romero Baena, A. 2008. Contaminación de suelos por metales pesados. Revista de la Sociedad Española de Mineralogía. 10: 48–60.
Giller, K.E., Witter, E., McGrath, S.P. 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol Biochem. 30:1389–1414.
He, Z.L., Yang, X.E. y Stoffella, P.J. 2005. Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology. 19: 125–140.
Hernández - Ramírez, Y. 2018. Estudio de un sistema bioinspirado de autoensamblaje dinámico con un anfitrión tipo salfen fosforado supramolecular. BSc. dissertation. National Autonomous University of Mexico.
Hirsch, P.R. y Mauchline, T.H. 2015. The importance of the microbial N-Cycle in soil for crop plant nutrition. Adv. Appl. Microbiol. 93: 45–71.
Horikoshi, M., Tang, Y., Dickey, A., Grenie, M., Thompson, R., Selzer, L., Strbenac, D. y Voronin, K. 2019. R package ‘ggfortify’ version 0.4.7
Hu, H.W. y He, J.Z. 2017. Comammox-a newly discovered nitrification process in the terrestrial nitrogen cycle. J Soils Sediments. 17:2709–2717.
ISO 10390:2005 Soil quality -Determination of pH. 2005. Disponible en: https://www.iso.org/standard/40879.html
ISO 3696:1987 Water for analytical laboratory use — Specification and test methods. 1987. Disponible en: https://www.iso.org/standard/9169.html
ISO 11277:2009 Soil quality-Determination of particle size distribution in mineral soil material — Method by sieving and sedimentation. 2009. Disponible en: https://www.iso.org/standard/54151.html
Isobe, K. y Ohte, N. 2014. Ecological perspectives on microbes involved in N-cycling. Microbes Environ. 29: 4–16.
Khan, M., Mahmood, A. y Alkhathlan, H.Z. 2016. Characterization of leaves and flowers volatile constituents of Lantana camara growing in central region of Saudi Arabia. Arabian Journal of Chemistry. 9: 764–774.
Keeney, D.R. y Nelson, D.W. 1982. Nitrogen - inorganic forms. En: Methods of Soil Analysis. A. L. Page, R.H. Miller y D.R Keeney (ed.), pp 643–698. ASA-SSSA, Agron. Madison USA.
Kosolapov, A.B., Tsybul’ko, E.I., Makarova, E.V. y Cherevach, E.I. 2004. Use of the syrup prepared on the basis of wildgrowing grasses of the Far East, in preventive maintenance of respiratory diseases and microelements at children. Vopr Pitan. 73: 21–24.
Liu, Y. y von Wiren, N. 2017. Ammonium as a signal for physiological and morphological responses in plants. Journal of Experimental Botany. 68: 2581–2592.
Lovley, D.R., Holmes, D.E. y Nevin, K.P. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol. 49:219–86.
Mendiburu, F. y Simon, R. 2009. R package ‘agricolae’ versión 1.3-1 agricolae. McLean, J.E. y Bledsoe, B.E. 1992. Behavior of Metals in Soils (EPA/540/S-92/018). U.S. Environmental Protection Agency, USA
Miller, A.J., Fan, X., Orsel, M., Smith, S.J. y Wells, D.M. 2007. Nitrate transport and signalling. Journal of Experimental Botany. 58: 2297–2306.
Nelson, M.B., Martiny, A.C. y Martiny, J.B.H. 2016. Global biogeography of microbial nitrogen-cycling traits in soil. PNAS. 113: 8033–8040.
Ochoa Espinosa, M.F., Armenta Calderón, A.D., Moreno Salazar, S.F., Fernández Herrera, E., Ochoa Meza, A. 2019. Fertilización orgánica y su impacto en la calidad del suelo. Biotecnia. XXI (1): 87–92.
Ojuederie, O.B. y Babalola, O.O. 2017. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int J Environ Res Public Health. 4: 14.
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R. et al. 2013. vegan: Community Ecology Package. R package version 2.0-3.2012
Olaniran, A.O., Balgobind, A. y Pillay, B. 2013. Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci. 14: 10197–10228.
Oves, M., Saghir, K.M., Huda, Q.A., Nadeen, F.M. y Almeebi, T. 2016. Heavy Metals: Biological Importance and Detoxification Strategies. J Bioremed Biodeg. 7: 334.
Pérez - Rodríguez, P., de Blas, E., Soto, B., Pontevedra-Pomba, X. y López - Periago, J.E. 2011. The soil use conflict and quality. CyTA - Journal of Food. 9: 342–343.
Philippot, L., Spor, A., Henault, C., Bru, D., Bizouard, F., Jones, C.M. et al. 2013. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7: 1609–19.
SEMARNAT. 2013. La degradación de suelos en México. Informe de La Situación Del Medio Ambiente En México. Compendio de Estadísticas Ambientales. Indicadores Clave y de Desempeño Ambiental. pp. 119–154.
Shade, A., Peter, H., Allison, S.D., Baho, D.L., Berga, M. et al. 2012. Fundamentals of microbial community resistance and resilience. Front Microbiol. 3:417.
Shimazaki, Y. 2013. Oxidation chemistry of metal (II) salen-type complexes. En: Electrochemistry. M. A. Khalid (ed.), pp 51–70. Intech Open, London.
Spain, A. 2003. Implications of microbial heavy metal tolerance in the environment. Rev. Undergrad Res. 2:1–6.
Stein, L.Y. y Klotz, M.G. 2016. The Nitrogen Cycle. Curr. Biol. 26: R94-8 d
van der Putten, W.H. y Wall, D.H. 2018. Ecosystem services provided by soil life. En: Routledge Handbook of Ecosystem Services. D. H Wall, R. D. Bardgett, V. Behan-Pelletier, J. E. Herrick, H. Jones, K. Ritz, J. Six, D. R. Strong y W.H. van der Putten (ed.), pp 415–420. Taylor &Francis Group, New York.
Van Kessel, M.A., Speth, D.R., Albertsen, M., et al. 2015. Complete nitrification by a single microorganism. Nature. 528: 555–9.
Weisany, W., Raei, Y. y Allahverdipoor, K.H. 2013. Role of some of mineral nutrients in biological nitrogen fixation. Bull Env Pharmacol Life Sci. 2: 77–84.
Walkley, A. y Black I.A. 1934. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63:251–263.
Wickham, H. 2016. ggplot2 Elegant Graphics for Data Analysis. R. Springer. Texas
Zaidi, A., Oves, M., Ahmad, E. y Khan, M.S. 2011. Importance of free-living Fungi in heavy metal remediation. En: Biomanagement of Metal-Contaminated Soils. Khan et al (eds.), pp 479–494. Springer. Netherlands.
Downloads
Published
How to Cite
Issue
Section
License
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.