Evaluación del ciclo del nitrógeno en un suelo agrícola perturbado con compuestos Sal-fen de níquel y zinc

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v22i3.1134

Palabras clave:

suelo agrícola, perturbación abiótica, M-Salfen

Resumen

El suelo proporciona servicios ecosistémicos fundamentales como la regulación del ciclo del nitrógeno, el cual, es dirigido por la microbiota que éste alberga y su estabilidad depende ante perturbaciones bióticas o abióticas, como la contaminación por metales y metaloides. Altas concentraciones de níquel (Ni) y zinc (Zn) en suelos agrícolas están relacionadas con la aplicación de prácticas agrícolas convencionales, composta, biosólidos, así como riego con agua contaminada proveniente de la industria minera y termoeléctrica, principalmente. Con el objetivo de conocer los efectos de dicha perturbación abiótica, se realizó un estudio a nivel microcosmos con suelo agrícola proveniente de la Costa de Hermosillo, Sonora, México, perturbado con compuestos M-salfen de Ni(II) y Zn(II), para evaluar su efecto basado en el funcionamiento del ciclo del nitrógeno en el sistema a lo largo del tiempo. Análisis espectrofotométricos de la reserva de nitrógeno inorgánico, absorción atómica y pH revelaron la recuperación de la funcionalidad del ciclo del nitrógeno en 240 días posteriores a las perturbaciones con M-salfen aplicadas, sugiriendo la utilización de NiSB15 como promotor para el incremento de la concentración de nitrato a los 60 días, en conjunción con NiSA15 para aumentar la concentración de amonio en suelos agrícolas contaminados con metales pesados.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Andrea Alicia López Pacheco, Universidad de Sonora

Maestra en Biociencias

Martha Verónica Escárcega-Bobadilla, Universidad Nacional Autónoma de México

Prifesora Investigadora Titular A, SNI 1, PRIDE 1

Laura Mondragón-Camarillo, Universidad Nacional Autónoma de México

Investigadora candidata Doctor contratada a proyecto.

Corina Hayano-Kanashiro, Universidad de Sonora

Maestro de Tiempo Completo titular A. SNI 1, Prodep perfil deseable.

Alejandro Varela-Romero, Universidad de Sonora

Profesor Investigador Titular B. SNI 1. Perfil deseable prodep.

Ramiro Vílchez-Vargas, Otto von Guericke University, Magdeburg,

Profesor Investigador.

Kadiya Calderón Alvarado, Universidad de Sonora

Profesor Investigador Tiempo Completo Titular A, SNI 1, Perfil Prodep deseable

Citas

Aislabie, J. y Deslippe. J.R. 2013. Soil microbes and their contribution to soil services. En: Ecosystem Services in New Zealand-conditions and trends. J.R. Dymond (ed), pp 143–161. Mannaaki Whenua Press, Lincoln., New Zeland.

Ardestani, M.M., van Straalen, N.M. y van Gestel, C.A.M. 2014. Uptake and elimination kinetics of metals in soil invertebrates: a review. Environ Pollut. 193: 277–295.

Azarbad, H., Niklińska, M., Laskowski, R., van Straalen, N.M., van Gestel, C.A.M., Zhou, J., He, Z., Wen, C., Roling, W.F.M. 2015. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiology Ecology 91:1–11.

Bader, N.R. 2010. Applications of schiff´s bases chelates in quantitative analysis: a review. Rasayan J Chem. 3: 660–670.

Cabello, P., Roldan, M.D. y Moreno-Vivian, C. 2004. Nitrate reduction and the nitrogen cycle in archaea. Microbiology. 150: 3527–3546.

Cano-Cruz, M.T. 2018. Estudios de autoensamblaje supramolecular y química anfitrión huésped. MSc dissertation. National Autonomous University of Mexico.

Calderón, K., Spor, A., Breuil, M.C., Bru, D., Bizouard, F., Violle, C., Bernard, R.L. y Philippot, L. 2017. Effectiveness of ecological rescue for altered soil microbial communities and functions. ISME J. 11: 272–283.

Calderón, K., Philippot, L., Bizouard, F. et al. 2018. Compounded disturbance chronology modulates the resilience of soil microbial communities and N-Cycle related functions. Front Microbiol. 6 :2721.

Cota-Ruiz, K., Nuñez-Gastelum, J.A., Delgado-Ríos, M., Martínez- Martínez, A. 2019. Biorremediación: Actualidad de conceptos y aplicaciones. Biotecnia. XXI (1): 37–44.

Daims, H., Lucker, S., Wagner, M. 2016. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24: 699–712.

Das, S., Dash, H.R. y Chakraborty, J. 2016. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol. 100: 2967–2984.

Escárcega-Bobadilla, M.V., Martínez Belmonte, M., Martin, E., Escudero-Adán, E.C. y Kleij, A.W. 2013. A recyclable trinuclear bifunctional catalyst derived from a tetraoxo Bis-Zn(salphen) metalloligand. Chem Eur J. 19: 2641–2648.

Galán Huertos, E. y Romero Baena, A. 2008. Contaminación de suelos por metales pesados. Revista de la Sociedad Española de Mineralogía. 10: 48–60.

Giller, K.E., Witter, E., McGrath, S.P. 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol Biochem. 30:1389–1414.

He, Z.L., Yang, X.E. y Stoffella, P.J. 2005. Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology. 19: 125–140.

Hernández - Ramírez, Y. 2018. Estudio de un sistema bioinspirado de autoensamblaje dinámico con un anfitrión tipo salfen fosforado supramolecular. BSc. dissertation. National Autonomous University of Mexico.

Hirsch, P.R. y Mauchline, T.H. 2015. The importance of the microbial N-Cycle in soil for crop plant nutrition. Adv. Appl. Microbiol. 93: 45–71.

Horikoshi, M., Tang, Y., Dickey, A., Grenie, M., Thompson, R., Selzer, L., Strbenac, D. y Voronin, K. 2019. R package ‘ggfortify’ version 0.4.7

Hu, H.W. y He, J.Z. 2017. Comammox-a newly discovered nitrification process in the terrestrial nitrogen cycle. J Soils Sediments. 17:2709–2717.

ISO 10390:2005 Soil quality -Determination of pH. 2005. Disponible en: https://www.iso.org/standard/40879.html

ISO 3696:1987 Water for analytical laboratory use — Specification and test methods. 1987. Disponible en: https://www.iso.org/standard/9169.html

ISO 11277:2009 Soil quality-Determination of particle size distribution in mineral soil material — Method by sieving and sedimentation. 2009. Disponible en: https://www.iso.org/standard/54151.html

Isobe, K. y Ohte, N. 2014. Ecological perspectives on microbes involved in N-cycling. Microbes Environ. 29: 4–16.

Khan, M., Mahmood, A. y Alkhathlan, H.Z. 2016. Characterization of leaves and flowers volatile constituents of Lantana camara growing in central region of Saudi Arabia. Arabian Journal of Chemistry. 9: 764–774.

Keeney, D.R. y Nelson, D.W. 1982. Nitrogen - inorganic forms. En: Methods of Soil Analysis. A. L. Page, R.H. Miller y D.R Keeney (ed.), pp 643–698. ASA-SSSA, Agron. Madison USA.

Kosolapov, A.B., Tsybul’ko, E.I., Makarova, E.V. y Cherevach, E.I. 2004. Use of the syrup prepared on the basis of wildgrowing grasses of the Far East, in preventive maintenance of respiratory diseases and microelements at children. Vopr Pitan. 73: 21–24.

Liu, Y. y von Wiren, N. 2017. Ammonium as a signal for physiological and morphological responses in plants. Journal of Experimental Botany. 68: 2581–2592.

Lovley, D.R., Holmes, D.E. y Nevin, K.P. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol. 49:219–86.

Mendiburu, F. y Simon, R. 2009. R package ‘agricolae’ versión 1.3-1 agricolae. McLean, J.E. y Bledsoe, B.E. 1992. Behavior of Metals in Soils (EPA/540/S-92/018). U.S. Environmental Protection Agency, USA

Miller, A.J., Fan, X., Orsel, M., Smith, S.J. y Wells, D.M. 2007. Nitrate transport and signalling. Journal of Experimental Botany. 58: 2297–2306.

Nelson, M.B., Martiny, A.C. y Martiny, J.B.H. 2016. Global biogeography of microbial nitrogen-cycling traits in soil. PNAS. 113: 8033–8040.

Ochoa Espinosa, M.F., Armenta Calderón, A.D., Moreno Salazar, S.F., Fernández Herrera, E., Ochoa Meza, A. 2019. Fertilización orgánica y su impacto en la calidad del suelo. Biotecnia. XXI (1): 87–92.

Ojuederie, O.B. y Babalola, O.O. 2017. Microbial and plant-assisted bioremediation of heavy metal polluted environments: A review. Int J Environ Res Public Health. 4: 14.

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’Hara, R. et al. 2013. vegan: Community Ecology Package. R package version 2.0-3.2012

Olaniran, A.O., Balgobind, A. y Pillay, B. 2013. Bioavailability of heavy metals in soil: Impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci. 14: 10197–10228.

Oves, M., Saghir, K.M., Huda, Q.A., Nadeen, F.M. y Almeebi, T. 2016. Heavy Metals: Biological Importance and Detoxification Strategies. J Bioremed Biodeg. 7: 334.

Pérez - Rodríguez, P., de Blas, E., Soto, B., Pontevedra-Pomba, X. y López - Periago, J.E. 2011. The soil use conflict and quality. CyTA - Journal of Food. 9: 342–343.

Philippot, L., Spor, A., Henault, C., Bru, D., Bizouard, F., Jones, C.M. et al. 2013. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7: 1609–19.

SEMARNAT. 2013. La degradación de suelos en México. Informe de La Situación Del Medio Ambiente En México. Compendio de Estadísticas Ambientales. Indicadores Clave y de Desempeño Ambiental. pp. 119–154.

Shade, A., Peter, H., Allison, S.D., Baho, D.L., Berga, M. et al. 2012. Fundamentals of microbial community resistance and resilience. Front Microbiol. 3:417.

Shimazaki, Y. 2013. Oxidation chemistry of metal (II) salen-type complexes. En: Electrochemistry. M. A. Khalid (ed.), pp 51–70. Intech Open, London.

Spain, A. 2003. Implications of microbial heavy metal tolerance in the environment. Rev. Undergrad Res. 2:1–6.

Stein, L.Y. y Klotz, M.G. 2016. The Nitrogen Cycle. Curr. Biol. 26: R94-8 d

van der Putten, W.H. y Wall, D.H. 2018. Ecosystem services provided by soil life. En: Routledge Handbook of Ecosystem Services. D. H Wall, R. D. Bardgett, V. Behan-Pelletier, J. E. Herrick, H. Jones, K. Ritz, J. Six, D. R. Strong y W.H. van der Putten (ed.), pp 415–420. Taylor &Francis Group, New York.

Van Kessel, M.A., Speth, D.R., Albertsen, M., et al. 2015. Complete nitrification by a single microorganism. Nature. 528: 555–9.

Weisany, W., Raei, Y. y Allahverdipoor, K.H. 2013. Role of some of mineral nutrients in biological nitrogen fixation. Bull Env Pharmacol Life Sci. 2: 77–84.

Walkley, A. y Black I.A. 1934. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63:251–263.

Wickham, H. 2016. ggplot2 Elegant Graphics for Data Analysis. R. Springer. Texas

Zaidi, A., Oves, M., Ahmad, E. y Khan, M.S. 2011. Importance of free-living Fungi in heavy metal remediation. En: Biomanagement of Metal-Contaminated Soils. Khan et al (eds.), pp 479–494. Springer. Netherlands.

Descargas

Publicado

2020-09-10

Cómo citar

López Pacheco, A. A., Escárcega-Bobadilla, M. V., Mondragón-Camarillo, L., Hayano-Kanashiro, C., Varela-Romero, A., Vílchez-Vargas, R., & Calderón Alvarado, K. (2020). Evaluación del ciclo del nitrógeno en un suelo agrícola perturbado con compuestos Sal-fen de níquel y zinc. Biotecnia, 22(3), 29–39. https://doi.org/10.18633/biotecnia.v22i3.1134

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.