Bagasse and compost of tequila agave bagasse in contrasting soils: 1. Degradation dynamics
Degradation dynamics of Bagasse and compost
DOI:
https://doi.org/10.18633/biotecnia.v25i2.1801Keywords:
Mineralization, organic residues, soils, rate of decomposition.Abstract
In the state of Jalisco (Mexico), the tequila industry generates a solid waste called agave bagasse which can be used as an organic amendment. However, its decomposition dynamics in soil is unknown. The objective was to evaluate the degradation process of four materials, Autoclave Bagasse (BA); diffuser bagasse (BD); Compost bagasse autoclave (CBA); and diffused bagasse compost (CBD), incubated in two contrasting soils (Regosol and Luvisol) for one year, to determine the remaining dry mass (MSR); decomposition constant (k); and isohumic coefficient (Ci), using the decomposition bag technique. The MSR showed significant differences between materials and soils, the highest losses occurred in BD and BA 74 and 62% in Regosol and 62 and 47 % in Luvisol. The highest values of k were presented in BD in Regosol (0.0099) and Luvisol (0.0074), followed by BA in Regosol (0.0059) and Luvisol (0.0025). The bagasse presented low values in Ci (0.51 and 0.72 with BA and 0.37 and 0.48 with BD, in Regosol and in Luvisol, respectively). The remaining dry matter and the decomposition constant revealed that the degradation processes of the bagasse were more intense and accelerated than in the compost.
Downloads
References
Acosta, Y., Cayama, J., Gómez, E., Reyes, N., Rojas, D. y García. H. 2006. Respiración microbiana y prueba de fitotoxicidad en el proceso de compostaje de una mezcla de residuos orgánicos. Multiciencias. 6: 220-27.
Anguria, P., Chemining’wa, G.N., Onwonga, R.N., y Ugen, M.A. 2017. Effects of Organic Residues on Soil Properties and Sesame Water Use Efficiency. Journal of Agricultural Science; 9: 98-107.
Bernal, M.P., Sánchez-Moreno, M., Paredes, C. y Roig, A. 1998. Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agriculture, Ecosystems & Environment. 69: 175-189.
Base referencial mundial del recurso suelo (WRB) IUSS Working Group. 2015. Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. Informes sobre recursos mundiales de suelos. No. 106. Tercera Edición. FAO©. Viale delle Terme di Caracalla, Roma, Italia. 218 p. Disponible en: https://www.fao.org/soils-portal/soil-survey/clasificacion-de-suelos/base-referencial-mundial/es.
Bonilla, C.C., Díaz, J., Gil, C., Girón, K., León, M., Ortíz, O. y Suárez, A. 2020. Dinámica de la descomposición de residuos orgánicos. Suelos ecuatoriales. 50: 31-39.
Cambardella, C.A., Richard, T.L. y Russell, A. 2003. Compost mineralization in soil as a function of composting process conditions. European Journal of Soil Biology. 39: 117-127.
Cedeño, C. M. 1995. Tequila production. Critical Reviews in Biotechnology. 15: 1-11.
CRT 2020. Consejo regulador del tequila. http://www.crt.org.mx/EstadisticasCRTweb/14/11/2020.
Crespo, G.M., González, E.D., Rodríguez, M.R., Rendón, S.L., del Real L.J. y Torres, M.J. 2013. Evaluación de la composta de bagazo de agave como componente de sustratos para producir plántulas de agave azul tequilero. Revista Mexicana de Ciencias Agrícolas. 4: 1161-1173.
Corbeels, M. 2001. Net Ecosystem Exchange: plant litter and decomposition: general concepts and model approaches. En: Kirschbaum MUF, Mueller R. (ed), pp 18-20. Cooperative research centre for greenhouse accounting. Australia.
Dzomeku, K.I. y Osman, I. 2018. Effects of Groundnut Shell, Rice Husk and Rice Straw on the Productivity of Maize (Zea mays L.) and Soil Fertility in the Guinea Savannah Zone of Ghana. Acta Scientific Agriculture, 2: 29-35.
Flavel, C.T. y Murphy, V.D. 2006. Carbon and nitrogen mineralization rates after application of organic amendments to soil. Journal of environmental quality. 35: 183-93.
Gallardo, J. F. 2017. La materia orgánica del suelo: residuos orgánicos, humus, compostaje, captura de carbono. Texcoco (Méjico): Universidad Autónoma de Chapingo. I.S.B.N.:978-607-12-0474-5. 424 pp.
Gao, H., X. Chen, J. Wei, Y. Zhang, L. Zhang, J. Chang and M. L. Thomson. 2016. Decomposition dynamics and changes in chemical composition of wheat straw residue under anaerobic and aerobic conditions. 11(7), 1-17.
García, A., M. Pilar and A. Roig. 2003. Carbon mineralisation and plant growth in soil amended with compost samples at different degrees of maturity. Sage Journals. Waste Manage Res. 21: 161–171.
Golchin, A., Oades, J.M., Skjemstad, J.O. y Clarke, P. 1994. Soil structure and carbon cycling. Australian J. Soil Res. 32: 1043-1068.
González, G.G., González, R.O. y Nungaray, A.J. 2005. Potencial del bagazo de Agave tequilero para la producción de biopolímeros y carbohidrasas por bacterias celulolíticas y para la obtención de compuestos fenólicos. e-Gnosis. 3: 1-18.
Heal, O., J. Anderson and M. Swift. 1997. Plant litter quality and decomposition: an historical overview. In Driven by nature: plant litter quality and decomposition. En: Cadisch G y Giller KE, (ed), pp 3-30. Pp.Wallinford. Oxon: CAB International.
Iñiguez, G., Martínez, G.A., Flores, P.A. y Virgen, G. 2011. Utilización de subproductos de la industria tequilera. Monitoreo de la evolución del compostaje de dos fuentes distinta de bagazo de Agave para la obtención de un substrato para jitomate. Revista internacional de contaminación ambiental. 27: 47-59.
Kriauciuniene, Z., Velicka, R. y Raudonius, S. 2012. The influence of crop residues type on their decomposition rate in the soil: a litterbag study. Zemdirbyste-Agriculture. 99: 227–236.
Macías, M.A. y Valenzuela, Z.A. 2009. El tequila en tiempos de la mundialización. Comercio Exterior. 59: 459-472.
Monsalve, C.O., Gutiérrez, D.J. y Cardona, W.A. 2017. Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión. Rev. Colombiana de Ciencias Hortícolas. 11: 200-209.
Muñoz, C.C. y Morales, P.R. 2018. Generación de residuos orgánicos en las unidades económicas comerciales y de servicios en la Ciudad de México. Estudios demográficos y urbanos. 33: 733-767.
NOM-021-RECNAT-2000 (Norma Oficial Mexicana). 2002. Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. SEMARNAT. México, D. F. 85 p.
Novita, E. 2016. Biodegradability simulation of coffee wastewater using instant coffee. Agriculture and Agricultural Science Procedia. 9: 217-229.
Olson, J.S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology. 44: 322–331.
Preston, M.C. y Trofymow, J.A. 2000. Variability in litter quality and its relationship to litter decay in Canadian forests. Canadian J. Botany. 78: 1269-1287.
Ramírez, C.C, Alonso, G.M. y Rigal, L. 2012. Valorización de residuos agroindustriales del tequila para alimentación de rumiantes. Revista Chapingo Serie Ciencias Forestales y del Ambiente. 18: 449-457.
Rodríguez, M.R., Alcántar, G.E., Íñiguez, C.G., Zamora, N.F., García, L.P., Ruiz, L.M. y Salcedo. P.E. 2010. Caracterización física y química de sustratos agrícolas a partir de bagazo de agave tequilero. Interciencia. 35: 515-520.
Rodrigues, dS.L., Feitosa, dS.T., Klestadt, L.L., Freitas, H. y Costa, C.M. 2022. Decomposition Rate of Organic Residues and Soil Organisms’ Abundance in a Subtropical Pyrus pyrifolia Field. Agronomy. 12: 263.
Rousk, J., y Bengtson, P. 2014. Microbial regulation of global biogeochemical cycles. Frontiers in microbiology. 5: 1-3.
Sánchez, S., Crespo, G. Hernández, M. y García, Y. 2008. Factores bióticos y abióticos que influyen en la descomposición de la hojarasca en pastizales. Pastos y forrajes. 31: 99-118.
Santamaría, R.S. y Ferrera, C.R. 2002. Dinámica poblacional de Eisenia andrei (Bouché 1972) en diferentes residuos orgánicos. Terra Latinoamericana. 20: 303-310.
Saval, S. 2012. Aprovechamiento de residuos agroindustriales: pasado, presente y futuro. Bio-Tecnología. 16: 14-46.
Six, J., Bossuyt, H., Degryze, S. y Denef, K. 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research. 79: 7-31.
Servicio Meteorológico Nacional-Comisión Nacional del Agua (SMN-CONAGUA). 2020. https://smn.conagua.gob.mx/es/ Consultado el 15 de noviembre de 2020.
Sollins, P., Homann, P. y Caldwell, B. 1996. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma. 74: 65-105.
Suvain, K.K., Paulpandi, V.K., Srinivasan, G., Subramanian, E., Indirani, R. y Prabakaran, K. 2021. Evaluating the incorporation method of crop residues and its impact on soil biological and chemical properties through decomposition. The Pharma Innovation Journal. 10: 1667-1671.
Statgraphics, C. 2014. Statgraphics Centurion XVII. User Manual. Version, 17 (8.0). Herndon, USA.
Thönnissen, C., Midmore, D.J., Ladha, J.K., Olk, D.C. y Schimidhalter, U. 2000. Legume decomposition and nitrogen release when applied as green manures to tropical vegetable production systems. Agronomy Journal. 92: 253-260.
Vanholme, R., Demedts, B., Morreel, K., Ralph, J. y Boerjan, J. 2010. Lignin biosynthesis and structure. Plan Physiology. 153: 895-905.
Van Veen, J.A. y Kuikman, P.K. 1990. Soil structural aspects of decomposition of organic matter by micro-organisms. Biogeochemistry. 11: 213-233.
van Vliet, P.C., Gupta, V.V. y Abbott, L.K. 2000. Soil biota and crop residue decomposition during summer and autumn in south-western Australia. Applied Soil Ecology. 14: 111–124.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.