Biochemical and morphometric changes in Coffea arabica after a treatment with ethyl methanosulfonate

Biochemical and morphometric changes in Coffea arabica

Authors

DOI:

https://doi.org/10.18633/biotecnia.v25i3.1969

Keywords:

mutagenesis, EMS, genetic variability, secondary metabolism

Abstract

The use of ethyl methanesulfonate (EMS) is a technology used to increase the genetic variability of cultivars. In coffee genetic improvement, EMS could generate new phenotypic and biochemical traits of agricultural importance. The objective of this research was to determine the changes in morphology and production of secondary metabolites in coffee plants generated from cell lines treated with EMS. Callus of Coffea arabica cv., Borbon were exposed to nine concentrations of EMS, and subsequently, the percentage of survival and fresh biomass were determined. Plants were regenerated on MS medium supplemented with vitamins, antioxidants and 6-benzylaminopurine. At 20 weeks, morphological changes were observed with respect to the callus not treated with EMS. Using dried leaves, secondary metabolites were extracted and quantified by high performance liquid chromatography. Callus survival and growth decreased with increasing EMS concentration (mean lethal dose: 148.8 mM), in seedlings it generated changes in leaf morphology, dwarfism and the formation of three meristems, which would increase the number of leaves. Finally, 140 mM of EMS increased the content of caffeine, caffeic acid and chlorogenic acid.

Downloads

Download data is not yet available.

References

Behera, M., Panigrahi, J., Mishra, R., y Rath, S. 2012. Analysis of EMS induced in vitro mutants of Asteracantha longifolia L. Nees using RAPD markers. Indian Journal of Biotechnology. pp 39-47.

Bolívar, A., Valdez, M., y Gatica., A. 2018. Responses of Arabica coffee (Coffea arabica L. var. Catuaí) cell suspensions to chemically induced mutagenesis and salinity stress under in vitro culture conditions. In Vitro Cellular & Developmental Biology-Plant, 54(6): 576-589. https://doi.org/10.1007/s11627-018-9918-x DOI: https://doi.org/10.1007/s11627-018-9918-x

Calabresea, E., Stanek, E. y Nascarellac, M. 2011. Evidencia de hormesis en relaciones dosis-respuesta de mutagenicidad. Investigación de mutaciones/toxicología genética y mutagénesis ambiental, 726(2): 91–97. https://doi.org/10.1016/j.mrgentox.2011.04.006. DOI: https://doi.org/10.1016/j.mrgentox.2011.04.006

Campa, C., Venkataramaiah, M., Kochko, A., Gal, L., Bourgeois, M., Moreau, C., ... y Noirot, M. 2005. Candidate gene strategy for the study of the chlorogenic acid biosynthesis. En: ASIC 2004. 20th In-ternational Conference on Coffee Science, Bangalore, India, 11-15 October 2004. pp. 644-650. As-sociation Scientifique Internationale du Café (ASIC).

Castro, L., Escobedo, R., y Miranda-Ham, M. 2006. Measurement of cell viability in vitro cultures. In Plant Cell Culture Protocols. pp. 71-76. Humana Press. https://doi.org/10.1385/1-59259-959-1:071 DOI: https://doi.org/10.1385/1-59259-959-1:071

Chen, H., Xiong, F., Xu, R., Chen, X., Zhong, H., Zhang, Y., ... y Tang, Z. 2023. Construction of EMS-Induced Peanut Mutant Libraries and Identification of Pod-Related Traits Mutant Li-nes. Phyton-International Journal Of Experimental Botany, 92(2): 537-557. DOI: https://doi.org/10.32604/phyton.2022.023912

Cuadrado, I. M., Llamazares, R. M., Martínez, A. P. y García, R. P. 2009. Actividad alelopática de la cafeína en plántulas de trigo y lenteja. Ambio Ciencias: revista de divulgación, 4: 29-36

Cui, L., Hanika, K., Visser, R. G. y Bai, Y. 2020. Mejora de la resistencia a patógenos mediante la ex-plotación de genes de susceptibilidad de plantas en café (Coffea spp.). Agronomía, 10 (12): 1928. https://doi.org/10.3390/agronomy10121928 DOI: https://doi.org/10.3390/agronomy10121928

de Melo, C. M. L., da Cruz Filho, I. J., de Sousa, G. F., de Souza, G. A., do Nascimento, D. K. D., da Silva, R. S., ... y de Moraes, G. J. 2020. Lignin isolated from Caesalpinia pulcherrima leaves has antioxidant, antifungal and immunostimulatory activities. International Journal of Biological Macromolecules, 162: 1725-1733. https://doi.org/10.1016/j.ijbiomac.2020.08.003 DOI: https://doi.org/10.1016/j.ijbiomac.2020.08.003

González, A. 2022. Caracterización morfoagronómica de variedades élite de Coffea arabica L. selec-cionados participativamente con respuesta fenotípica al estrés abiótico. Tesis de licenciatura. Universidad Autónoma de Chiapas, México.

IPGRI (International Plant Genetic Resources Institute). Descriptors for coffee (Coffea spp. and Psi-lanthus spp.). Roma, Italia. 36 p. [Consultado 23 enero 2023] 1996. Disponible en https://www.bioversityinternational.org/fileadmin/user_upload/online_library/publications/pdfs/365.pdf.

Ishibashi, K., Miura, Y., Wagatsuma, K., Toyohara, J., Ishiwata, K. e Ishii, K. 2022. Adenosine A2A Receptor Occupancy by Caffeine After Coffee Intake in Parkinson's Disease. Movement Disorders. 37 (4): 853-857. https://doi.org/10.1002/mds.28897 DOI: https://doi.org/10.1002/mds.28897

Joya, J. G. y Gutiérrez, F. A. 2020. Ethyl methanesulfonate as inductor of somaclonal variants in dif-ferent crops. Phyton. 89(4): 835-850. 10.32604/phyton.2020.013679 DOI: https://doi.org/10.32604/phyton.2020.013679

Loyola, V. M., Avilez-Montalvo, J. R., Avilés-Montalvo, R. N., Márquez-López, R. E., Galaz-Ávalos, R. M. y Mellado-Mojica, E. 2016. Embriogénesis Somática en Coffea spp. En: Loyola-Vargas, V., Ochoa-Alejo, N. (eds) Embriogénesis Somática: Aspectos Fundamentales y Aplicaciones. Springer, Cham. pp 241-266 https://doi.org/10.1007/978-3-319-33705-0_15 DOI: https://doi.org/10.1007/978-3-319-33705-0_15

Luján-Hidalgo, M. C., Jiménez, L. A., Ruiz, N., Reyes, S. J. y Gutiérrez, F. A. 2020. Cambios bioquí-micos en respuesta al ataque de roya en plantaciones de café. Polibotánica. 49(1): 149-160. https://doi.org/10.18387/polibotanica.49.10 DOI: https://doi.org/10.18387/polibotanica.49.10

Mallick, M., Awasthi, O. P., Paul, V., Verma, M. K., y Jha, G. 2016. Effect of physical and chemical mutagens on leaf sclerophylly and stomatal characteristics of Kinnow mandarin mutants. Indian Journal of Horticulture, 73(2): 291–293. http://dx.doi.org/10.5958/0974-0112.2016.00063.3 DOI: https://doi.org/10.5958/0974-0112.2016.00063.3

Mba, C., Afza, R., Bado, S., y Jain, S.M. 2010. Induced mutagenesis in plants using physical and chemical agents. Plant cell culture: essential methods, 20: 111-130. DOI: https://doi.org/10.1002/9780470686522.ch7

Mishra, MK. 2019. Recursos Genéticos y Mejoramiento de Café (Coffea spp.). En: Al-Khayri, J., Jain, S., Johnson, D. (eds) Avances en estrategias de fitomejoramiento: cultivos de nueces y bebidas. Springer, Cham. pp 475-515 https://doi.org/10.1007/978-3-030-23112-5_12 DOI: https://doi.org/10.1007/978-3-030-23112-5_12

Murashige, T. y Skoog, F. 1962. A revised medium for rapid growth and bioassays with tabacco tissue cultures. Physiologia Plantarum 15: 473–493. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Pawar, N., Pai, S., Nimbalkar, M., Kolar, F., Dixit, G. 2010. Induction of chlorophyll mutants in Zingiber officinale Roscoe by gamma rays and EMS, Emirates Journal of Food and Agriculture. 22(1): 406–411. https://doi.org/10.9755/ejfa.v22i5.4828 DOI: https://doi.org/10.9755/ejfa.v22i5.4828

Purente, N., Chen, B., Liu, X., Zhou, Y. y He, M. 2020. Effect of ethyl methanesulfonate on induced morphological variation in M3 generation of Chrysanthemum indicum var. aromaticum. HortScience, 55(7), 1099-1104. https://doi.org/10.21273/HORTSCI15068-20 DOI: https://doi.org/10.21273/HORTSCI15068-20

Reyes, S. J., Ramírez, M. L., Arias, C., Rodríguez, M. A., Lecona, C. A., Ruíz, V. M., ... y Gutiérrez, F. A. 2019. Morphometric and biochemical changes in Agave americana L. plantlets induced by ethyl me-thanesulfonate. Phyton, 88 (3): 277. https://doi.org/10.32604/phyton.2019.06504 DOI: https://doi.org/10.32604/phyton.2019.06504

Rime, J., Dinesh, M. R., Sankaran, M., Shivashankara, K. S., Rekha, A., y Ravishankar, K. V. 2019. Evaluation and characterization of EMS derived mutant populations in mango. Scientia Horticulturae, 254(1): 55–60. https://doi.org/10.1016/j.scienta.2019.04.015 DOI: https://doi.org/10.1016/j.scienta.2019.04.015

Sanglard, N. A., Amaral, P. M., Sattler, M. C., de Oliveira, S. C., Cesário, L. M., Ferreira, A., ... y Cla-rindo, W. R. 2019. Indirect somatic embryogenesis in Coffea with different ploidy levels: a revisiting and updating study. Plant Cell, Tissue and Organ Culture, 36(2): 255-267. https://doi.org/10.1007/s11240-018-1511-9 DOI: https://doi.org/10.1007/s11240-018-1511-9

Serrat, X., Esteban, R., Guibourt, N., Moysset, L., Nogués, S. Lalanne, E. 2014. EMS mutagenesis in mature seedderived rice calli as a new method for rapidly obtaining TILLING mutant populations. Plant Methods, 10(5): 1-14. https://doi.org/10.1186/1746-4811-10-5 DOI: https://doi.org/10.1186/1746-4811-10-5

Servicio de Información Agroalimentaria y Pesquera (SIAP). Cierre de la producción agrícola 1980 a 2022. Gobierno de México. [Consultado 27 diciembre 2022] 2022. Disponible en En: https://nube.siap.gob.mx/cierreagricola/

Sridevi, V. y Giridhar, P. 2013. In vitro shoot growth, direct organogenesis and somatic embryogenesis promoted by silver nitrate in Coffea dewevrei. Journal Plant Biochemistry and Biotechnology, 23:112-118. https://doi.org/10.1007/s13562-012-0186-2 DOI: https://doi.org/10.1007/s13562-012-0186-2

Suprasanna, P., Mirajkar, S. J., Bhagwat, S. G. 2015. Mutaciones Inducidas y Mejoramiento de Culti-vos. En: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Bio-technology. Springer, Nueva Delhi. pp 593–617 https://doi.org/10.1007/978-81-322-2286-6_23 DOI: https://doi.org/10.1007/978-81-322-2286-6_23

World Coffee Research. Las variedades de café arabica. 10940 SW Barnes Rd #334 Portland, OR 97225. 75 pp. [Consultado 23 enero 2023] 2019. Disponible en: https://varieties.worldcoffeeresearch.org/

Zhang, N., Wang, S., Zhang, X., Dong, Z., Chen, F. y Cui, D. 2016. Transcriptome analysis of the Chinese bread wheat cultivar Yunong 201 and its ethyl methanesulfonate mutant line. Gene, 575(2): 285-293. https://doi.org/10.1016/j.gene.2015.09.002. DOI: https://doi.org/10.1016/j.gene.2015.09.002

Published

2023-09-01

How to Cite

Joya Dávila, J., Gutiérrez Miceli, F. A. ., Luján Hidalgo, M. C., Serrano Gómez, L. A. ., & Ruíz Sesma, B. (2023). Biochemical and morphometric changes in Coffea arabica after a treatment with ethyl methanosulfonate: Biochemical and morphometric changes in Coffea arabica. Biotecnia, 25(3), 36–41. https://doi.org/10.18633/biotecnia.v25i3.1969

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.