Effect of the extrusion process on the physicochemical, phytochemical, and cooking properties of gluten-free pasta made from broken rice and chickpea flours

Authors

  • Samuel Arturo Delgado-Murillo Posgrado en Ciencia y Tecnología de Alimentos, Universidad Autónoma de Sinaloa
  • José de Jesús Zazueta-Morales Español
  • Armando Quintero-Ramos Español
  • Yazmín Alejandra Castro-Montoya Español
  • Xóchitl Ariadna Ruiz-Armenta Posgrado en Ciencia y Tecnología de Alimentos, Universidad Autónoma de Sinaloa
  • Víctor Limón-Valenzuela Posgrado en Ciencia y Tecnología de Alimentos, Universidad Autónoma de Sinaloa
  • Carlos Iván Delgado Nieblas Universidad Autónoma de Sinaloa

DOI:

https://doi.org/10.18633/biotecnia.v26.2142

Keywords:

celiac disease, food by-products, bioactive compounds, optimization

Abstract

Gluten-free pasta (GFP) can be produced using materials such as broken rice and chickpea flour. The objective of this work was to study the effect of the extrusion process on the physicochemical, phytochemical, and cooking properties of GFP. The effect of the extrusion temperature (ET: 90.18–123.8 °C), the screw speed (SS: 76.6–157.3 rpm), and the chickpea flour content (CHF: 0.23–23.7 %) was studied using the response surface methodology for the statistical analysis. The cooking loss diminished by combining high ET with intermediates CHF, and by combining intermediates SS with intermediates-high CHF. The cooking time diminished by combining high ET with high CHF and intermediates-high SS. The color b* increased at high CHF. The total phenolic compounds decreased by combining low ET with low CHF, and by combining low ET with high SS. The optimal conditions were ET = 117 °C, SS = 134.4 rpm, and CHF = 12.57 %. The total, insoluble, and soluble dietary fiber was higher in the extruded treatment compared with the unextruded mixture. GFP with similar sensory acceptability to a commercial product was obtained, showing adequate physicochemical, phytochemical, and cooking properties, whose consumption presents potential health benefits.

Downloads

Download data is not yet available.

References

AACC. 2000. Method 16-50. Approved Methods of the American Association of Cereal Chemists. 10th ed. St. Paul, MN.

Adom, K.F. and Liu, R.H. 2002. Antioxidant activity of grains. Journal of Agricultural and Food Chemistry. 50(21): 6182-6187.

AOAC. 2012. Official methods of analysis of AOAC International. Association of Official Analytical Chemists. 19th Ed. Gauthersburg, Maryland, USA.

Belton, P. and Taylor, J. 2010. Pseudocereals and Less Common Cereals – Grain Properties and Potential Utilization. Berlin, Germany: Springer.

Bolarinwa, I. F. and Oyesiji, O.O. 2021. Gluten free rice-soy pasta: proximate composition, textural and sensory attributes. Heliyon. 7(1): e06052.

Bouasla, A. and Wójtowicz, A. 2021. Gluten-Free Rice Instant Pasta: Effect of Extrusion-Cooking Pa-rameters on Selected Quality Attributes and Microstructure. Processes. 9(4): 693.

Bresciani, A., Pagani, M.A. and Marti, A. 2022. Pasta-making process: a narrative review on the relation between process variables and pasta quality. Foods. 11(3): 256.

Chávez-Ontiveros, J., Reyes-Moreno, C., Ramírez-Torres, G.I., Figueroa-Salcido, O.G., Arámburo-Gálvez, J.G., Montoya-Rodríguez, A., Ontiveros, N. and Cuevas-Rodríguez, E.O. 2022. Extrusion improves the antihypertensive potential of a kabuli chickpea (Cicer arietinum L.) protein hydrolysate. Foods. 11(17): 2562.

Coutinho, L.S., Batista, J.E.R., Caliari, M. and Soares Júnior, M.S. 2013. Optimization of extrusion varia-bles for the production of snacks from by-products of rice and soybean. Food Science and Technolo-gy. 33(4): 705–712.

D'egidio, M.G., Mariani, B.M., Nardi, S., Novaro, P. and Cubadda, R. 1990. Chemical and technological variables and their relationships: A predictive equation for pasta cooking quality. Cereal Chemistry. 67(3): 275-281.

Fabila-Carrera, G. 1998. Design and analysis of industrial experiments. Universidad Iberoamericana (pp. 19–29). México,D. F.

Feizollahi, E., Mirmoghtadaie, L., Mohammadifar, M. A., Jazaeri, S., Hadaegh, H., Nazari, B. and Lalegani, S. 2018. Sensory, digestion, and texture quality of commercial gluten‐free bread: Impact of broken rice flour type. Journal of Texture Studies. 49(4): 395-403.

Foschia, M., Peressini, D., Sansidoni, A., Brennan, C.S. 2013.The effects of dietary fibre addition on the quality of common cereal products. Journal of Cereal Science, 58(2):216-227. https://doi.org/10.1016/j.jcs.2013.05.010.

García-Almeida, J., García-Alemán, J., Martínez-Alfaro, B., Vilchez-López, F.J. and Maraver-Selfa, S. 2012. Enfermedad celiaca. Dieta controlada en gluten. Capítulo 16. En: Dietoterapia, nutrición clínica y metabolismo. (Eds). Edic. Díaz de Santos. Madrid.

Granito, M., Pérez, S. and Valero, Y. 2014 Calidad de cocción, aceptabilidad e índice glicémico de pasta larga enriquecida con leguminosas. Revista Chilena de Nutrición. 41(4): 425-432.

Gujral, H.S., Sharma, P., Kumar, A. and Singh, B. 2012. Total phenolic content and antioxidant activity of extruded brown rice. International Journal of Food Properties. 15(2): 301-311.

Herrera-Cazares, L.A., Luzardo-Ocampo, I., Ramírez-Jiménez, A.K., Gutiérrez-Uribe, J.A., Campos-Vega, R. and Gaytán-Martínez, M. 2021. Influence of extrusion process on the release of phenolic com-pounds from mango (Mangifera indica L.) bagasse-added confections and evaluation of their bio-accessibility, intestinal permeability, and antioxidant capacity. Food Research International. 148: 110591.

Heimler, D., Vignolini, P., Giulia, D.M., Vincieri, F.F., and Romani, A. 2006. Antiradical activity and pol-yphenol composition of local Brassicaceae edible varieties, Food Chemistry. 99(3):464-469. https://doi.org/10.1016/j.foodchem.2005.07.057.

Hoseney, R. C. 1999. Principles of Cereal Science and Technology, pp. 32–65, 269–274. St. Paul, MN, USA: American Association of Cereal Chemists.

Jalgaonkar, K., Jha, S.K., Mahawar, M.K. and Yadav, D.N. 2019. Pearl millet based pasta: Optimization

of extrusion process through response surface methodology, Journal of Food Science and Technology. 56(3): 1134-1144.

Kumar, P., Yadav, S. and Singh, M.P. 2020. Possible involvement of xanthophyll cycle pigments in heat tolerance of chickpea (Cicer arietinum L.). Physiology and Molecular Biology of Plants. 26: 1773-1785.

Lim, J. 2011. Hedonic scaling: A review of methods and theory. Food Quality and Preference. 22(8): 733-747.

Marti, A., Seetharaman, K. and Pagani, M. A. 2010. Rice-based pasta: A comparison between conventional pasta-making and extrusion-cooking. Journal of Cereal Science. 52(3): 404-409.

Menis-Henrique, M.E.C., Scarton, M., Piran, M.V.F. and Clerici, M.T.P.S. 2020. Cereal fiber: Extrusion modifications for food industry. Current Opinion in Food Science. 33: 141-148.

Myers R. and Montgomery, D. 1995. Response surface methodology: Process and product optimization using design experiments. New York: Wiley Interscience Publications.

Padalino, L., Mastromatteo, M., Lecce, L., Spinelli, S., Conte, A. and Alessandro Del Nobile, M. 2015. Optimization and characterization of gluten-free spaghetti enriched with chickpea flour. International Journal of Food Sciences and Nutrition. 66(2): 148-158.

Qin, W., Lin, Z., Wang, A., Chen, Z., He, Y., Wang, L., Liu, L., Wang, F. and Tong, L.T. 2021. Influence of particle size on the properties of rice flour and quality of gluten-free rice bread. LWT. 151: 112236.

Romano, A., Ferranti, P., Gallo, V. and Masi, P. 2021. New ingredients and alternatives to durum wheat semolina for a high quality dried pasta. Current Opinion in Food Science. 41: 249-259.

Saget, S., Costa, M., Barilli, E., de Vasconcelos, M.W., Santos, C.S., Styles, D. and Williams, M. 2020. Substituting wheat with chickpea flour in pasta production delivers more nutrition at a lower envi-ronmental cost. Sustainable Production and Consumption. 24: 26-38.

Samyor, D., Deka, S. C. and Das, A.B. 2018. Effect of extrusion conditions on the physicochemical and phytochemical properties of red rice and passion fruit powder based extrudates. Journal of Food Science and Technology. 55: 5003-5013.

Sofi, S. A., Singh, J., Mir, S. A. and Dar, B.N. 2020. In vitro starch digestibility, cooking quality, rheology and sensory properties of gluten-free pregelatinized rice noodle enriched with germinated chickpea flour. LWT. 133: 110090.

Stat-Ease. 2018. Desing-expert (Version 11.0). Minneapolis, MN, USA.

Suo, X., Dall’Asta, M., Giuberti, G., Minucciani, M., Wang, Z. and Vittadini, E. 2022. The effect of chickpea flour and its addition levels on quality and in vitro starch digestibility of corn–rice-based gluten-free pasta. International Journal of Food Sciences and Nutrition. 73(5): 600-609.

Torres, A., Frias, J., Granito, M. and Vidal-Valverde, C. 2007. Germinated Cajanus cajan seeds as ingre-dients in pasta products: Chemical, biological and sensory evaluation. Food Chemistry. 101(1): 202-211.

Udachan, I. and Sahoo, A. K. 2017. Quality evaluation of gluten free protein rich broken rice pasta. Journal of Food Measurement and Characterization. 11: 1378-1385.

Wang, N., Maximiuk, L. and Toews, R. 2012. Pea starch noodles: Effect of processing variables on char-acteristics and optimization of twin-screw extrusion process. Food Chemistry. 133(3): 742-753.

Graphical abstract

Published

2024-02-19

How to Cite

Delgado-Murillo, S. A. ., Zazueta-Morales, J. de J. ., Quintero-Ramos, A., Castro-Montoya, Y. A. ., Ruiz-Armenta, X. A. ., Limón-Valenzuela, V. ., & Delgado Nieblas, C. I. (2024). Effect of the extrusion process on the physicochemical, phytochemical, and cooking properties of gluten-free pasta made from broken rice and chickpea flours. Biotecnia, 26, e2142. https://doi.org/10.18633/biotecnia.v26.2142

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)