Bagasse and bagasse compost from agave tequilero in contrasting soils: 3. Soil respiration and greenhouse gas emissions

Authors

DOI:

https://doi.org/10.18633/biotecnia.v26.2178

Keywords:

organic waste, mineralization rate, carbon kinetics

Abstract

The study of soil respiration (microbial CO2 emission ) due to the incorporation of organic waste (RO) from agroindustry (bagasse and bagasse compost), allows estimating the environmental effect in relation to the CO2 emission due to the mineralization of the carbon during its decomposition process, which must be considered from the point of view of climate change. Therefore, the objective was to evaluate the dynamics of CO2 emission due to the mineralization of four lignocellulosic materials, incorporated in soils of different textures. Using the alkaline respiration technique, CO2 respiration was quantified in Regosol and Luvisol by incorporating two bagasse (TBD and TBA) and their composts (TCD and TCA) for 30 days under controlled humidity and temperature conditions. The TBD and TBA treatments increased microbiological activity with higher emissions; while the TCD and TCA treatments increased the soil organic C (COS) content with lower emissions. The CO2 emission was related to the mineralization of the RO and this in turn to its chemical composition and its resistance to decomposition; in addition, the dynamics of the emissions were different by type of material and by type of soil. The incorporation of bagasse type RO is an option to increase soil microbial activity, but with greater greenhouse gas (GHG) emissions; while compost RO generates an increase in the capture of COS and, therefore, a greater store of C and a lower emission of CO2.

Downloads

Download data is not yet available.

Author Biographies

Laura Acosta Acosta Sotelo, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara

Main Author of the articles:

Tequilero agave bagasse and bagasse compost in contrasting soils: 1. Degradation dynamics

Tequilero agave bagasse and bagasse compost in contrasting soils: 2. Dynamics of carbon and nitrogen mineralization

Dr. Graduated from the Doctoral Program in Sciences in Biosystematics, Ecology and Management of Natural and Agricultural Resources (BEMARENA) at the University of Guadalajara.

Gerardo Sergio Benedicto Valdés, Colegio de Postgraduados

Co-author of the Manuscript: BAGASSE AND BAGASSE COMPOST FROM AGAVE TEQUILERO IN CONTRASTING SOILS: 3. MINERALIZATION OF SOIL ORGANIC MATTER

Senior Research Professor, Montecillo Campus Postgraduate College, Postgraduate College

Juan Fernando Gallardo Lancho, C.S.I.C., IRNASa (jubilado). Salamanca 37008 (España).

Co-author of the manuscript: BAGASSE AND AGAVE TEQUILERO BAGASSE COMPOST IN CONTRASTING SOILS: 3. MINERALIZATION OF SOIL ORGANIC MATTER

Co-author of publications:

Tequilero agave bagasse and bagasse compost in contrasting soils: 1. Degradation dynamics

Tequilero agave bagasse and bagasse compost in contrasting soils: 2. Dynamics of carbon and nitrogen mineralization

Research Professor at C.S.I.C., IRNASa

Juan Francisco Zamora Natera, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara.

Co-author of the manuscript: Tequilero agave bagasse and bagasse compost in contrasting soils: 3. Mineralization of soil organic matter

Co-author of publications:


Tequilero agave bagasse and bagasse compost in contrasting soils: 1. Degradation dynamics

Tequilero agave bagasse and bagasse compost in contrasting soils: 2. Dynamics of carbon and nitrogen mineralization

Professor-Researcher “C”, of the University Center of Biological and Agricultural Sciences, of the University of Guadalajara

Josefina Casas Solís, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA)

Manuscript co-author:

Tequilero agave bagasse and bagasse compost in contrasting soils: 3. Mineralization of soil organic matter

Research Professor at the University Center of Biological and Agricultural Sciences of the University of Guadalajara.

References

Abad, B.M., Noguera, M.P. y Carrión. B.C. 2004. Los sustratos en los cultivos sin suelo. En: G.M. Urreztarazu (Ed.). Tratado de cultivo sin suelo. pp 113-158. Mundi-Prensa, Madrid (España).

Acosta Sotelo, L.L., Zamora Natera, J.F., Rodríguez Macías, R., González Eguiarte, D.R., Gallardo Lancho, J.F. y Salcedo Pérez, E. 2023b. Bagazo y composta de bagazo de agave tequilero en suelos contrastantes: 1. Dinámica de degradación: Dinámica de degradación de Bagazo y composta. Biotecnia. 25: 90–96.

Acosta Sotelo, L.L., Zamora Natera, J.F., Rodríguez Macías, R., Jiménez Plascencia, C., Gallardo Lancho, J.F. y Salcedo Pérez, E. 2023a. Bagazo y composta de bagazo de agave tequilero en suelos contrastantes: 2. Dinámica de mineralización del carbono y nitrógeno: Bagazo y composta de bagazo de agave tequilero. Biotecnia. 25: 5–11.

Albíter, P.J.F., Vaca, R., del Aguila P., Yáñez, O.G., Lugo, J. 2020. Flujo de CO2 y su relación con propiedades bioquímicas en cultivos hortícolas en invernadero. Ecosistemas y Recursos Agropecuarios 7: 1-12.

Ambus, P. y Jensen, E.S. 1997. Nitrogen mineralization and denitrification as influenced by crop residue particle size. Plant and Soil. 197: 261–270.

Anderson, J.P.E. 1982. Soil respiration. En: Page AL, Miller RH, Keeney DR. Methods of soil analysis. Part 2: Chemical and microbiological properties (ed.), pp 831-871. American Society of Agronomy and Soil Science of America. Madison, Wisconsin, USA.

Anderson, J.P.E. 1984. Herbicide degradation in soil: influence of microbial biomass. Soil Biology and Biochemistry. 16: 483-489.

ArchMiller, A.A. y Samuelson, L.J. 2016. Intra-annual variation of soil respiration across four heterogeneous longleaf pine forests in the southeastern United States. Forest Ecology and Management. 359: 370–380.

Awad, Y.M., Blagodatskaya, E., Ok, Y.S. y Kuzyakov, Y. 2012. Effects of polyacrylamide, biopolymer, and biochar on decomposition of soil organic matter and plant residues as determined by 14C and enzyme activities. European Journal Soil Biology. 48: 1–10.

Ayuso, M., Pascual, J.A. García, C. y Hernández, T. 1996. Evaluation of urban wastes for agricultural use. Soil Science and Plant Nutrition. 42: 105-111.

Azeez, J.O. y Van Averbeke, W. 2010. Nitrogen mineralization potential of three animal manures applied on a sandy clay loam soil. Bioresource Technology. 101: 5645- 5651.

Base referencial mundial del recurso suelo (WRB) IUSS Working Group. 2015. Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. Informes sobre recursos mundiales de suelos. No. 106. Tercera Edición. FAO©. Viale delle Terme di Caracalla, Roma, Italia. 218 p. Disponible en: https://www.fao.org/soils-portal/soil-survey/clasificacion-de-suelos/base-referencial-mundial/es.

Barrales-Brito, E., Guerrero-Ortiz, P.L., Estrada-Herrera, I., Hernández-López, F.J. y Benedicto-Valdés, S.G. 2015. Dinámica de carbono en un suelo con la adición de diferentes tipos de materia orgánica. En: Paz, F., J. Wong y R. Torres. Serie Síntesis Nacionales. Programa Mexicano del Carbono en colaboración con el Centro del Cambio Global y la Sustentabilidad en el Sureste, A.C y el Centro Internacional de Vinculación y Enseñanza de la Universidad Juárez Autónoma de Tabasco. (ed.), pp 232-238. Texcoco. Estado de México., México.

Bastida, F., Zsolnay, A., Hernández, T. y García, C. 2008. Past, Present and Future of soil quality indices: A biological perspective. Geoderma. 147:159-171.

Benedicto-Valdés, G.S., Montoya-García, C.O., Vicente-Hernández, Z., Ramírez-Ayala, C. y Escalante-Estrada, J.A.S. 2019. Incorporación de abonos orgánicos y liberación de C-CO2 como indicador de la mineralización del carbono. Ecosistemas y Recursos Agropecuarios. 6: 513-522.

Bonilla, C.C.R., Díaz, J., Gil, C., Girón, K., León, M., Ortiz, O. y Suarez, A. 2020. Dinámica de la descomposición de residuos orgánicos. Suelos Ecuatoriales. 50: 31-39.

Bünemann, E.K., Bongiorno, G., Bai, Z., Creamer, R.E., De Deyn, G., de Goede R., Fleskens, L., Geissen, V., Kuyper, T.W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J.W. y Brussaard, L. 2018. Soil quality – A critical review. Soil Biology Biochemistry. 120:1 05-125.

Blagodatskaya, E. y Kuzyakov. Y. 2013. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology Biochemistry. 67: 192-211.

Camacho, D.A., Martínez, L., Ramírez, S.H., Valenzuela, R. y Valdés, M. 2014. Potencial de algunos microorganismos en el compostaje de residuos sólidos. Terra Latinoamericana. 32: 291-300.

Castelo-Gutiérrez, A.A., García-Mendívil, H.A., Castro-Espinoza, L., Lares-Villa, F., Arellano-Gil, M., Figueroa-López, P. y Gutiérrez-Coronado, M.A. 2016. Residual mushroom compost as soil conditioner and bio-fertilizer in tomato production. Revista Chapingo, Serie Horticultura. 22: 83-93.

Collins, H.P., Elliot, L.F., Rickman, R.W., Bezdicek, D.F. and Papendick. R.I. 1990. Decomposition and interactions among wheat residue components. Soil Science Society of America Journal. 54: 780-785.

Chase F.E. y P.H.H. Gray. 1957. Application of the Warburg respirometer in studying respiratory activity in soil. Canadian Journal of Microbiology. 3: 335-349.

Chávez, G.L. 2010. Uso de bagazo de la industria mezcalera como materia prima para generar energía. Ingenierías. 13: 8-16.

Cheng, W., Parton, W.J., Gonzalez-Meler, M.A., Phillips, R., Asao, S., McNickle, G.G., Brzostek, E. y Jastrow, J.D. 2014. Synthesis and modeling perspectives of rhizosphere priming. New Phytologist. 201: 31-44.

Chi, Y., Yang, P., Ren, S., Ma, N., Yang, J. y Xu, Y. 2020. Effects of fertilizer types and water quality on carbon dioxide emis¬sions from soil in wheat-maize rotations. Science of The Total Environment. 698: 1–9.

Cruz-Sánchez, Y., López-Teloxa, L.C., Gómez-Diaz, J.D. y Monterroso-Rivas, A.I. 2021. Respiración del suelo en un bosque templado de México y su relación con el carbono orgánico. Madera y Bosques 27:1-17.

Datta, A., Jat, H.S., Yadav, A.K., Choudhary, M., Sharma, P.C., Rai, M., Singh, L.K., Majumder, S.P., Choudhary, V. y Jat, M.L. 2019. Carbon mineralization in soil as influenced by crop residue type and placement in an Alfisols of Northwest India. Carbon Management. 10: 37–50.

Davidson, E.A., Belk, E. y Boone. R.D. 2002. Soil water content and temperatura as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology. 4: 217–227.

Dommergues, Y. 1968. Dégagement tellurique de CO2: Mesure et signification. Annales du Institute Pasteur. 4: 626–656.

Ferrera, R. y Alarcón, A. 2001. La microbiología del suelo en la agricultura sostenible. Ciencia Ergo Sum 8: 175-183.

Gallardo, J.F. 2017. La materia orgánica de suelos: Residuos orgánicos, humus, compostaje y captura de carbono. Universidad Autónoma de Chapingo, Texcoco (México). I.S.B.N.: 978-607-12-0474-5. 424 pp.

García, A. y Rivero, C. 2008. Evaluación del carbono microbiano y la respiración basal en respuesta a la aplicación de lodo papelero en los suelos de la Cuenca del Lago de Valencia, Venezuela. Revista Facultad de Agronomía (Maracay). 34: 215-229.

Giacomini, S.J., Recous, S., Mary, B. y Aita, C. 2007. Simulating the effects of N availability, straw particle size and location in soil on C and N mineralization. Plant and Soil. 301: 289–301.

Gili, P., Irisarri, J., Tasile, V., Behemer, S., Starik, C. y Sagardoy, M. 2011. Descompactación de suelos de huertos de manzanos (Malus domestica Borkh.) bajo riego en el alto valle de río negro-argentina. Agro Sur. 39: 67-78.

Guerrero, O.L., Quintero, L.R., Espinoza, H.V., Benedicto, V.G.S. y Sánchez, C.M.J. 2012. Respiración de CO2 como indicador de la actividad microbiana en abonos orgánicos de Lupinus. Terra Latinoamericana. 30: 355-362.

Hongjia, Li., Foston, M. B., Kumar, R., Reichel, S., Xiadi, G., Fan, H., Ragauskas, A.J. y Wyman, C. E. 2012. Chemical composition and characterization of cellulose for Agave as a fast-growing, drought-tolerant biofuels feedstock. RSC Advances. 2: 4951-4958.

Hossain, M.B, Rahman, M.M., Biswas, J.C., Miah, M.M.U., Akhter, S., Maniruzzaman, M., Choudhury, A.K., Ahmen, F., Shiragi, K. y Kalra, N. 2017. Carbon mineralization and carbon dioxide emission from organic matter added soil under different temperature regimes. International Journal of Recycling Organic Waste in Agriculture. 6: 311–319.

Hussain, M.Z., Grunwald, T., Tenhunen, J.D., Li, Y.L. Mirzae. H., Bernhofer, C., Otieno, D., Dinh, N.Q. Schmidt, M., Wartinger, M. y Owen, K. 2011. Summer drought influence on CO2 and water fluxes of extensively managed grassland in Germany. Agriculture, Ecosystems & Environment. 141: 67–76.

Iñiguez, G., Martínez, G.A., Flores, P.A. y Virgen, G. 2011. Utilización de subproductos de la industria tequilera. Monitoreo de la evolución del compostaje de dos fuentes distinta de bagazo de Agave para la obtención de un substrato para jitomate. Revista internacional de contaminación ambiental. 27: 47-59.

Kwiatkowski, C., Harasim, E. y Staniak, M. 2020. Effect of catch crops and tillage systems on some chemical properties of loess soil in a short-term monoculture of spring wheat. Journal of Elementology. 25: 35- 43.

Levi, M.R., Riffaldi, R., y Saviozzi, A. 1990. Carbon mineralization in soil amended with different organic materials. Agriculture, Ecosystems & Environment. 31: 325-335.

Liyanage, L.R.M.C., Sulaiman, M.F., Ismail, R., Gunaratne, G.P., Dharmakeerthi, R.S., Rupasinghe, M.G.N., Mayakaduwa, A.P. y Hanafi, M.M. 2021. Carbon Mineralization Dynamics of Organic Materials and Their Usage in the Restoration of Degraded Tropical Tea-Growing Soil. Agronomy. 11: 1-18.

López, T.L.C., Monterroso, R.A.I. y Gómez, D.J.D. 2020. Diseño de calibración para cuantificar emisiones de CO2 (respiración del suelo) durante intervalos diurnos. Agrociencia. 54: 731-745.

Luna, F.M.A. y Mesa, R.J.R. 2016. Microorganismos eficientes y sus beneficios para los agricultores. Revista científica Agroecosistemas. 4: 31-40.

Mátyás, B, Lowy, D.A., Singla, A., Meléndez, J.R. y Sándor, Z. 2020. Comparación de los efectos ejercidos por los biofertilizantes, los fertilizantes NPK y los métodos de cultivo sobre la respiración del suelo en el suelo de chernozem. La granja. Revista de Ciencias de la Vida. 32: 8-18.

Mohanty, S., Nayak, A.K., Kumar, A., Tripathi, R., Shahid, M., Bhattacharyya, P., Raja, R. y Panda, B.B. 2013. Carbon and nitrogen mineralization kinetics in soil of rice-rice system under long term application of chemical fertilizers and farmyard manure. Europan Journal of Soil Biology. 58: 113–121.

Monsalve, C., O, I., Gutiérrez-D., J, S. y Cardona, W.A. 2017. Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión. Revista Colombiana de Ciencias Hortícolas. 11: 200–209.

Moreno-Cornejo, J., Zornoza, R. y Faz, A. 2014. Carbon and Nitrogen Mineralization during Decomposition of Crop Residues in a Calcareous Soil. Geoderma. 230–231: 58–63.

Moyano, A., San Miguel, C., Gallardo, J.F. 1987. Estudio respirométrico in vitro de horizontes superficiales de tres suelos enriquecidos con materia orgánica. Anu. Cent. Edaf. Biol, Aplic. Salamanca. 12: 183-190.

Ngo, P.T., Rumpel, C., Ngo, Q.A., Alexis, M., Velásquez, V.G., Mora, G.M.L., Dang, D.K., Jouquet, P. 2013. Biological and chemical reactivity and phosphorus forms of buffalo manure compost, vermicompost and their mixture with biochar. Bioresource Technology 148: 401–407.

Nourbakhsh, F. y Sheikh-Hosseini, A.R. 2006. A kinetic approach to evaluate salinity effects on carbón mineralization in a plant residue amended soil. Journal of Zhejiang University SCIENCE B. 7: 788-793.

Orozco, A., Valverde, M., Trélles, R., Chávez, C. y Benavides, R. 2016. Propiedades físicas, químicas y biológicas de un suelo con biofertilización cultivado con manzano. Terra Latinoamericana. 34: 441-456.

Oviedo, O.E.R., Marmolejo, R.L.F. y Torres, L.P. 2017. Avances en investigación sobre el compostaje de biorresiduos en municipios menores de países en desarrollo. Lecciones desde Colombia. Ingeniería Investigación y Tecnología. 38: 31-42.

Paolini, G.J.E. 2018. Actividad microbiológica y biomasa microbiana en suelos cafetaleros de los Andes venezolanos. Terra Latinoamericana. 36: 13-22.

Pathan, S.I., Vˇetrovský, T., Giagnoni, L., Datta, R., Baldrian, P., Nannipieri, P. y Renella, G. 2018. Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency. Plant and Soil. 433:401–413.

Pardo P.Y.J., Paolini, G.J.E. y Cantero, G.M.E. 2019. Biomasa microbiana y respiración basal del suelo bajo sistemas agroforestales con cultivos de café. Revista U.D.C.A Actualidad & Divulgación Científica. 22: e1144.

Pascual, J.A.; Hernández, T.; García, C. y Ayuso, M., 1998. Carbon mineralization in an arid soil amended with organic wastes of varying degrees of stability. Communication in Soil Science and Plant Analysis. 29: 835-846.

Pörtner, H.O., Roberts, D.C., Poloczanska, E.S., Mintenbeck, K., Tignor, M., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V. y Okem, A. 2022. IPCC, 2022: resumen para responsables de políticas. En: Cambio climático 2022: Impactos, adaptación y vulnerabilidad: contribución del grupo de trabajo II al sexto informe de evaluación del panel intergubernamental sobre cambio climático. Cambridge, Reino Unido y Nueva York, NY, EE. UU., págs. 3-33.

Qi, G., Wang, Q., Zhou, W., Ding, H., Wang, X., Qi, L., Wang, Y., Li, S. y Dai, L. 2011. Moisture effect on carbon and nitrogen mineralization in topsoil of Changbai Mountain, Northeast China. Journal of Forest Science. 57: 340–348.

Rahman, M.M. 2013. Nutrient-use and carbon accumulation efficiencies in soils from different organic wastes in rice and tomato cultivation. Communications in Soil Science and Plant Analysis. 44:1457–1471.

Rakesh, S., Sarkar, D., Sinha, A.K., Shikha., Mukhopadhyay, P., Danish, S., Fahad, S. y Datta, R. 2021. Carbon Mineralization Rates and Kinetics of Surface-Applied and Incorporated Rice and Maize Residues in Entisol and Inceptisol Soil Types. Sustainability. 13: 1-16.

Ru, J., Zhou, Y., Hui, D., Zheng, M. y Wan, S. 2018. Shifts of growing-season precipitation peaks decrease soil respiration in a semiarid grassland. Glob Chang Biol. 24: 1001–1011.

Ryan, E.M., Ogle, K., Kropp, H., Samuels-Crow, K.E., Ca¬rrillo, Y. y Pendall, E. 2018. Modeling soil CO2 production and transport with dynamic source and diffusion terms: Testing the steady-state assumption using DETECT v1.0. Geosci Model Dev. 11: 1909–1928.

Sánchez, B., Ruiz, M. y Ríos, M. 2005. Materia orgánica y actividad biológica del suelo en relación con la altitud en la cuenca del río Maracay, estado Aragua. Agronomía Tropical. 55: 507-534.

Sanz-Cobenaa, A., Lassalettab, L., Aguilera, E., del Prado, A., Garnier, J., Billen, G., Iglesias, A., Sánchez, B., Guardia, G., Abalos, D., Plaza-Bonilla, D., Puigdueta-Bartolomé, I., Moral, R., Galánd, E., Arriaga, H., Merino, P., Infante-Amate, J., Meijide, A., Pardo, G., Álvaro-Fuentes, J., Gilsanz, C., Báez, D., Doltra, J., González-Ubierna, S., Cayuela, M.L., Menéndez, S., Díaz-Pinés, E., Le-Noë, J., Quemada, M., Estellés, F., Calvet, S., van Grinsven, H.J.M., Westhoek, H., Sanz, M.J., Gimeno, B.S., Vallejo, A. y Smith, P. 2017. Strategies for greenhouse gas emissions mitigation in Mediterranean agriculture: A review. Agriculture, Ecosystems and Environment. 238:5-24.

Scholze, M., Knorr, W. y Heimann, M.M. 2003. Modelling terrestrial vegetation dynamics and carbon cycling for an abrupt climatic change event. The Holocene. 13: 327–333.

Smith, J.L. y Paul, E.A. 1990. The signif icance of soil microbial biomass estimations. En: J.M. Bollag y G. Stotzky. Soil biochemistry (ed.), pp 357-396. Marcel Dekker. New York (N. Y., USA).

Srivastava, M., Sharma, S.D. y Kudrat, M. 2012. Effect of crop rotation, soil temperature and soil moisture on CO2 emission rate in Indo-Gangetic plains of India. International Journal Agriculture and Forestry. 2: 117–120.

Statgraphics Centurion. 2014. User Manual, versión 17 (8.0). Statgraphics Centurion, Herndon, Virginia, USA.

Wei, S., Zhang, X., McLaughlin, N.B., Liang, A., Jia, S., Chen, X. y Chen, X. 2014. Effect of soil temperature and soil moisture on CO2 flux from eroded landscape positions on black soil in Northeast China. Soil and Tillage Research. 144: 119–125.

Xu, W., Yuan, W., Cui, L., Ma, M. y Zhang, F. 2019. Responses of soil organic carbon decomposition to warming depend on the natural warming gradient. Geoderma. 343: 10–18.

Yáñez, D.M.I., Cantú, S.I., González, R.H., Marmolejo, M.J.G., Jurado, E. y Gómez, M.M.V. 2017. Respiración del suelo en cuatro sistemas de uso de la tierra. Revista Mexicana de Ciencias Forestales. 8: 123-149.

Zeng, J., Liu, X., Song, L., Lin, X., Zhang, H., Shen, C. y Chu, H. 2016. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biology and Biochemistry. 92: 41-49.

Zucconi, F., Monaco, A. y Foster. M. 1987b. Phytotoxines during the estabilization of organic matter, Pp. 73-86. En: J.K.R. Glasser (ed.). Composting of agricultural and other wastes. Elsevier Applied Science Publ., New York (U.S.A.), 320 pp.

Zhang, H., Li, G., Song, X., Yang, D., Li, Y., Qiao, J., Zhang, J. y Zhao, S. 2013. Changes in soil microbial functional diversity under different vegetation restoration patterns for Hulunbeier Sandy Land. Acta Ecologica Sinica. 33: 38-44.

Zhu, B. y Cheng, W. 2011. Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition. Global Change Biology. 17: 2172-2183.

Graphical abstract

Published

2024-04-08

How to Cite

Acosta Sotelo, L. L., Salcedo Pérez, E., Benedicto Valdés, G. S., Gallardo Lancho, J. F., Zamora Natera, J. F., & Casas Solís, J. (2024). Bagasse and bagasse compost from agave tequilero in contrasting soils: 3. Soil respiration and greenhouse gas emissions. Biotecnia, 26, e2178. https://doi.org/10.18633/biotecnia.v26.2178

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)