Antibacterial activity of organic extracts from Solidago graminifolia leaves

Authors

  • G Tobías Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, 89840, El Mante, Tamaulipas, México
  • J R Ramírez De León Unidad Académica de Trabajo Social y Ciencias para el Desarrollo Humano, Universidad Autó-noma de Tamaulipas, Centro Universitario, 87120, Cd. Victoria, Tamaulipas, México
  • J F Castañón Rodríguez Unidad Académica de Trabajo Social y Ciencias para el Desarrollo Humano, Universidad Autó-noma de Tamaulipas, Centro Universitario, 87120, Cd. Victoria, Tamaulipas, México
  • F A Paredes-Sanchez Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, 89840, El Mante, Tamaulipas, México
  • A D Paz-González Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Poli-técnico Nacional, 88710, Reynosa, Tamaulipas, México https://orcid.org/0000-0002-0938-6304
  • G Rivera Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Poli-técnico Nacional, 88710, Reynosa, Tamaulipas, México
  • V Herrera-Mayorga Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, 89840, El Mante, Tamaulipas, México

DOI:

https://doi.org/10.18633/biotecnia.v26.2277

Keywords:

plant, secondary metabolites, gram-negative

Abstract

Solidago graminifolia (syn. Euthamia graminifolia (L.) Nutt) is a native species plant from North America, with abundant flavonoids, diterpenes, and polyacetylenes metabolites that have shown cholinesterase enzyme inhibitory activity and antimicrobial activity. The aim of this study was to determine the antibacterial activity of Solidago graminifolia leaf extracts obtained with ethanol, dichloromethane, and hexane solvents. The S. graminifolia extracts were tested against Escherichia coli, Salmonella enterica, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The chemical composition of each extract was analyzed by UPLC-MS/MS. The yield extracts in ethanolic, dichloromethane and hexanoic solvents were 20.39 %, 18.34 %, and 5.3 %, respectively. The secondary metabolites identified were flavonoids, hyperoxide, quercetin, kaempferol, and some phenolic acids, such as chlorogenic acid and solidagoic acid derivatives. The ethanolic extract inhibited the five strains in all concentrations (15 mg/mL, 10 mg/mL, 5 mg/mL, and 2.5 mg/mL). The ethanol extract has a MIC of 2.0 mg/mL against S. aureus and 1.5 mg/mL for the Gram-negative bacteria E. coli, S. enterica, P. aeruginosa, and K. pneumoniae; the dichloromethane extract has MIC values of 2.5 mg/mL for Gram-negative strains and 2.0 mg/mL for S. aureus. This study showed that the ethanolic extract had the best antibacterial activity, and its biological activity can be attributed to its richness in polyphenolic compounds.  

Downloads

Download data is not yet available.

References

Alves M.J., Ferreira I.C.F.R., Froufe H.J.C., Abreu, R.M.V., Martins A., & Pintado M. 2013. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. Journal of Applied Microbiology. 115(2):346–357.

Baglyas M., Ott P.G., Garádi Z., Glavnik V., Béni S., Vovk I., & Móricz Á.M. 2022. High-performance thin-layer chromatography - antibacterial assay first reveals bioactive clerodane diterpenes in giant goldenrod (Solidago gigantea Ait.). Journal of Chromatography A. 1677:463308.

Criollo P.J., Obando M., Sánchez L. & Bonilla R. 2013. Efecto de bacterias promotoras de crecimiento vegetal (PGPR) asociadas a Pennisetum clandestinum en el altiplano cundiboyacense. Ciencia y Tecnología Agropecuaria. 13(2): 189-195.

Da Silva P.M., Rodríguez Da S.B., de Oliveira, S.J.N., de Moura M.C., Soares T., Feitosa A.P.S. & Napoleão T.H. 2019. Punica granatum sarcotesta lectin (PgTeL) has antibacterial activity and synergistic effects with antibiotics against β-lactamase-producing Escherichia coli. International Journal of Biological Macromolecules. 15(135):931-939.

De Mieri M., Monteleone G., Ismajili I., Kaiser M. & Hamburger M. 2017. Antiprotozoal activity-based profiling of a dichloromethane extract from Anthemis nobilis flowers. Journal of Natural Products. 80(2):459–470.

Fursenco C., Calalb T., Uncu L., Dinu M., Ancuceanu R. 2020. Solidago virgaurea L.: a review of its ethnomedicinal uses, phytochemistry, and pharmacological activities. Biomolecules. 10(12):1619.

Herrera-Mayorga V., Guerrero-Sánchez J.A, Méndez-Álvarez D., Paredes-Sánchez F.A., Rodríguez-Duran L.V., Niño-García N., Paz-González A.D & Rivera G. 2022. Insecticidal activity of organic extracts of Solidago graminifolia and its main metabolites (quercetin and chlorogenic acid) against Spodoptera frugiperda: an in vitro and in silico approach. Molecules. 27(10):3325.

Herrera-Mayorga V., Ochoa-Esparza D.L., Delgado-Maldonado T., Paz-González A. D., Paredes-Sánchez F. & Rivera G. 2023. Analysis of the α-cypermethrin biodegradation by Klebsiella pneumoniae YH43. Revista Internacional de Contaminación Ambiental. 39(1): 417–427.

Isah T. 2019. Stress and defense responses in plant secondary metabolites production. Biological Research. 52(1):39.

Jaisinghani R.N. 2017. Antibacterial properties of quercetin. Microbiology Research. 8(1), 6877.

Khan I., Rahman H., Abd El-Salam N.M., Tawab A., Hussain A., Khan T.A., Khan U. A., Qasim M., Adnan M., Azizullah A., Murad W., Jalal A., Muhammad N. & Ullah, R. 2017. Punica granatum peel extracts: HPLC fractionation and LC MS analysis to quest compounds having activity against multidrug resistant bacteria. BMC complementary and alternative medicine. 17(1): 247.

Koolivand A., Abtahi H., Godini K., Saeedi R., Rajaei M.S., Parhamfar M. & Seifi H. 2019. Biodegradation of oil tank bottom sludge using a new two-phase composting process: kinetics and effect of different bulking agents. Journal of Material Cycles and Waste Management. 21:1280-1290.

Li R., Morris-Natschke S.L., & Lee K.H. 2016. Clerodane diterpenes: sources, structures, and biological activities. Natural Product Reports.33(10):1166-226.

Mojica Á.D.N., Ramírez-Rueda R.Y. & Espitia M.M.I. 2015. Evaluación de la actividad antibacteriana de extractos vegetales contra Enterococcus faecalis resistente a vancomicina. Salud & Sociedad Uptc. 2(1):27-32.

Móricz Á.M., Jamshidi-Aidji M., Krüzselyi D., Darcsi A., Böszörményi A., Csontos P., Béni S., Ott P.G. & Morlock G.E. 2020. Distinction and valorization of 30 root extracts of five goldenrod (Solidago) species. Journal of chromatography A. 1611:1-9.

Nkuimi W.J.G., Quassinti L., Gudžinskas Z., Nagy D.U., Cianfaglione K., Bramucci M. & Maggi F. 2020. Chemical composition and antiproliferative effect of essential oils of four Solidago species (S. canadensis, S. gigantea, S. virgaurea and S.×niederederi). Chemistry & biodiversity. 17(11):e2000685.

Ramírez L.S., Marín C.D. 2009. Metodologías para evaluar in vitro la actividad antibacteriana de compuestos de origen vegetal. Scientia Et Technica. 15 (42): 263-268.

Salvat A., Antonacci L., Fortunato R.H., Suarez E.Y. & Godoy H.M. 2004. Antimicrobial activity in methanolic extracts of several plant species from northern Argentina. Phytomedicine: international journal of phytotherapy and phytopharmacology. 11(2-3): 230–234.

Silva D.S.J., Gonçalves, C.J.P., de Oliveira, C.P. & Ortega M.M. 2021. The pharmacological action of kaempferol in central nervous system diseases: a review. Frontiers in Pharmacology. 11: 565700.

Starks C.M., Williams R.B., Goering M.G., O'Neil-Johnson M., Norman V.L., Hu J. F., Garo E., Hough G.W., Rice S.M. & Eldridge G.R. 2010. Antibacterial clerodane diterpenes from Goldenrod (Solidago virgaurea). Phytochemistry. 71(1): 104–109.

Szymura M. & Szymura T.H. 2016. Interactions between alien goldenrods (Solidago and Euthamia species) and comparison with native species in Central Europe, Flora-Morphology. Distribution, Functional Ecology of Plants. 218:51-61.

Toiu A., Vlase L., Vodnar D.C., Gheldiu A.M., Oniga I. 2019. Solidago graminifolia L. Salisb. (Asteraceae) as a valuable source of bioactive polyphenols: HPLC profile, in vitro antioxidant, and antimicrobial potential. Molecules. 24(14):2666.

Wasihun Y., Alekaw H.H. & Dires A.K. 2023. Antibacterial activity and phytochemical components of leaf extract of Calpurnia aurea. Scientific Reports. 13(1):9767.

Yang D., Wang T., Long M. & Li P. 2020. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxidative Medicine and Cellular Longevity. 2020:1-13.

Yoo S-R., Ha H., Shin H-K. & Seo C-S. 2020. Anti-inflamatory activity of neolignan compound isolated from the roots of Saururus chinensis. Plants. 9(8):932.

Zhang J.J., Qu L.B., Bi Y.F., Pan C.X., Yang R. & Zeng H.J. 2022. Antibacterial activity and mechanism of chloroform fraction from aqueous extract of mugwort leaves (Artemisia argyi L.) against Staphylococcus aureus. Letters in Applied Microbiology. 74(6): 893–900.

Graphical abstract

Downloads

Additional Files

Published

2024-10-17

How to Cite

Tobías, G., Ramírez De León, J., Castañón Rodríguez, J. F., Paredes-Sanchez, F. A., Paz-González, A. D., Rivera, G., & Herrera-Mayorga, V. (2024). Antibacterial activity of organic extracts from Solidago graminifolia leaves. Biotecnia, 26, e2277. https://doi.org/10.18633/biotecnia.v26.2277

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)