EXTRACTOS DE HOJAS DE PLANTAS PARA CONSERVAR LA CALIDAD DE LA CARNE Y LOS PRODUCTOS CÁRNICOS FRESCOS. REVISIÓN
DOI:
https://doi.org/10.18633/biotecnia.v20i3.712Keywords:
Extractos de hojas, Actividad antioxidante, Actividad antimicrobiana, Calidad de la carneAbstract
Actualmente, uno de los objetivos de la industria cárnica es incrementar la vida de anaquel de sus productos, lo anterior debido al aumento en la demanda de los consumidores. La vida útil de estos productos es comúnmente afectada por factores tales como la oxidación de lípidos (LOX) y la actividad microbiana (AM). Para evitarlo, el sector cárnico utiliza aditivos sintéticos (BHT, BHA, TBHQ, entre otros) con actividad antioxidante (AOX) y antimicrobiana (AMA). A pesar de ello, se conoce que estos aditivos ejercen efectos adversos en la salud humana, lo que provoca desconfianza en los consumidores. Por lo anterior, diversos trabajos de investigación se enfocan hacia la búsqueda de nuevos aditivos alimentarios, como son los extractos de hojas de plantas. Sin embargo, su composición y bioactividad están influenciados por el solvente y el método de extracción utilizado durante su obtención, ya que los extractos de hojas de plantas obtenidos con solventes polares y métodos de extracción no convencionales, muestran mayor contenido de fitoquímicos, AOX y AMA. En conclusión, los resultados de diversas investigaciones demuestran la efectividad de estos extractos para extender la vida de anaquel, al reducir la LOX y AM, cuando son incorporados en productos cárnicos.
Downloads
References
Achour, S., Khelifi, E., Attia, Y., Ferjani, E. y Hellal, A.N. 2012. Concentration of antioxidant polyphenols from Thymus capitatus extracts by membrane process technology. Journal of Food Science. 6: C703-C709.
Ahn, D.U. y Nam, K.C. 2004. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volátiles of irradiated ground beef. Radiaton Physics and Chemistry. 71:149-154.
Asenjo, M.B. 1999. Efecto de la raza y de la alimentación en los parámetros productivos y de calidad de canal y de carne en añojos de razas charolés y serrana soriana. Tesis de Doctorado. Universidad de Valladolid, Soria.
Asnaashari, M., Tajik, R. y Khodaparast, M.H.H. 2015. Antioxidant activity of raspberry (Rubus fruticosus) leaves extract and its effect on oxidative stability of sunflower oil. Journal of Food Science and Technology. 52: 5180-5187.
Alothman, M., Bhat, R. y Karim, A.A. 2009. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chemistry. 115: 785-788.
Al-Rimawi, F., Tarawa, M.S. y Elama, C. 2017. Olive leaf extract as natural antioxidant additive of fresh hamburguer stored a 4°C. American Journal of Food Science and Technology. 5: 162-166.
Aziz, N.A., Bux, H., Amir, Z.M., Zulfiqar, A.M., Iqbal, A., Roomi, S., Muhammad, I. y Hussain, S.S. 2012. Antimicrobial and antioxidant activities of Mimosaceae plants; Acacia modesta Wall (Phulai), Prosopis cineraria (Linn.) and Prosopis juliflora (Swartz). Journal of Medicinal Plants Research. 15: 2962-2970.
Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M.H.A., Ghafoor, K., Norulaini, N.A.N. y Omar, A.K.M. 2013. Techniques for extraction of bioactive compounds from plant materials: a review. Journal of Food Engineering.117: 426-436.
Bañón, S., Díaz, P., Rodríguez, M., Garrido, M.D. y Price, A. 2007. Ascorbate, green tea and grape seed extracts increase the shelf life of low sulphite beef patties. Meat Science. 77: 626-633.
Bhat, R., Liong, M.T., Abdorreza, M.N. y Karim, A.A. 2013. Evaluation of free radical scavenging activity and antioxidant potential of a few popular Green leafy vegetables of Malaysia. International Journal of Food Properties. 16: 1371-1379.
Balasundram, N., Sundram, K. y Samman, S. 2006. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry. 99: 191-203.
Becker, T. 2000. Consumer perception of fresh meat quality: a framework for analysis. British Food Journal.102: 158-176.
Behbahani, B.A., Yazdi, F.T., Shahidi, F., Noorbakhsh, H., Vasiee, A. y Alghooneh, A. 2018. Phytochemical analysis and antibacterial activities extracts of mangrove leaf against the growth of some pathogenic bacteria. Microbial Pathogenesis. 114: 225-232.
Belfeki, H., Mejri, M. y Hassouna, M. 2016. Antioxidant and antilipases activities in vitro of Mentha viridis and Eucalyptus globulus extracts. Industrial Crops and Products. 89: 514-521.
Belkhir, M., Rebai, O., Dhaouadi, K., Sioud, B., Amri, M. y Sami, F. 2013. Antioxidant and antimicrobial activities of Tunisian azarole (Crataegus azarolus L.) leaves and fruit pulp/ peel polyphenolic extracts. International Journal of Food Properties. 16: 1380-1393.
Biswas, A.K., Chatli, M.K. y Sahoo, J. 2012. Antioxidant potential of curry (Murraya koenigii L.) and mint (Mentha spicata) leaf extracts and their effect on colour and oxidative stability of raw ground pork meat during refrigeration storage. Food Chemistry. 133: 467-472.
Brewer, M.S. 2011. Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety. 10: 221-247.
Choe, J.H., Jang, A., Choi, J.H., Choi, Y.S., Han, D.J., Kim, H.Y., Lee,
M.A., Kim, H.W. y Kim, C.J. 2010. Antioxidant activities of lotus leaves (Nelumbo nucifera) and barley leaves (Hordeum vulgare) extracts. Food Science and Biotechnology. 19: 831-836.
Comision del Codex Alimentarius. 2017. Normas internacionales de los alimentos; Norma general para los aditivos alimentarios. [Consultado 21 Julio 2017]. Disponible en: http://www.fao.org/gsfaonline/docs/CXS_192s.pdf.
Devatkal, S.K., Thorat, P.R., Manjunatha, M. y Anurag, R.K. 2012. Comparative antioxidant effect of aqueous extracts of curry leaves, fenugreek leaves and butylated hydroxytoluene in raw chicken patties. Journal of Food Science and Technology. 49: 781-785.
Falowo, A.B., Fayemi, P.O. y Muchenje, V. 2014. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Research International. 64: 171-181.
Falowo, A.B., Muchenje, V., Hugo, A., Aiyegoro, O.A. y Fayemi, P.O. 2017. Antioxidant activities of Moringa oleifera L. and Bidens pilosa L. leaf extracts and their effects on oxidative stability of ground raw beef during refrigeration storage. CyTA-Journal of Food. 15: 249-256.
Fasseas, M.K., Mountzouris, K.C., Tarantilis, P.A., Polissiou, M. y Zervas, G. 2007. Antioxidant activity in meat treated with oregano and sage essential oils. Meat Science. 106: 1188-1194.
Faustman, C., Sun, Q., Mancini, R. y Suman, S.P. 2010. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Science.86: 86-94.
Fernández‐Ginés, J.M., Fernández‐López, J., Sayas‐Barberá, E. y Pérez‐Alvarez, J. 2005. Meat products as functional foods: A review. Journal of Food Science. 70: R37-R43.
Gorinstein, S., Park, Y.S., Heo, B.G., Namiesnik, J., Leontowicz, H., Leontowicz, M., Ham, K.S., Cho, J.Y. y Kang, S.G. 2009. A comparative study of phenolic compounds and antioxidant and antiproliferative activities in frequently consumed raw vegetables. European Food Research Technology. 228: 903-911.
Gonzalez, V.A.A. 2004. Obtención de aceites esenciales y extractos etanólicos de plantas de las amazonas. Tesis de Licenciatura. Universidad Nacional de Colombia. Manizales.
Haagen-Smith, A.J. 1972. The chemistry, origin and function of the essential oil in plant life. En Guenther E. The essential oils, Vol I, pp 17-28. Krieger Publishing Company Malabar, Florida.
Han, J. y Rhee, K.S. 2005. Antioxidant properties of selected Oriental non-culinary/nutraceutical herb extracts as evaluated in raw and cooked meat. Meat Science. 70: 25-33.
Heredia, N., Dávila-Aviña, J.E., Solís, S.L. y García, S. 2014. Productos cárnicos: principales patógenos y estrategias no térmicas de control. Nacameh. 8: S20-S42.
Hernández, C.J.J. 2009. Microencapsulación del aceite esencial de orégano (Lippia berlandieri Schauer) para su aplicación en la conservación de carne de res. Tesis de Licenciatura. Universidad Autónoma Agraria Antonio Narro. Coahuila, México.
Huang, B., He, J., Ban, X., Zeng, H., Yao, X. y Wang, Y. 2011. Antioxidant activity of bovine and porcine meat treated with extracts from edible lotus (Nelumbo nucifera) rhizome knot and leaf. Meat Science. 87: 46-53.
Kalidindi, N., Thimmaiah, N.V., Jagadeesh, N.V., Nandeep, R., Swetha, S. y Kalidindi, B. 2015. Antifungal and antioxidant activities of organic and aqueous extracts of Annona squamosa Linn. leaves. Journal of Food and Drug Analysis. 23: 795-802.
Katalinic, V., Smole, M.S., Generalic, I., Skroza, D., Ljubenkov, I. y Klancnik, A. 2013. Phenolic profile, antioxidant capacity and antimicrobial activity of leaf extracts from six Vitis vinifera L. varietis. International Journal of Food Properties. 1: 45-60.
Kim, S.J., Cho, A.R. y Han, J. 2013. Antioxidant and antimicrobial activities of leafy green vegetable extracts and their applications to meat product preservation. Food Control. 29: 112-120.
Klopčič, M., Kuipers, A. y Hocquette, J.F. 2013. Consumer attitudes to food quality products: Emphasis on Suthern Europe, EAAP publication. No. 133. Wageningen Academic Publishers (Ed.). Países Bajos.
Kong, B., Zhang, H. y Xiong, Y.L. 2010. Antioxidant activity of spice extracts in a liposome system and in cooked pork patties and the possible mode of action. Meat Science. 85: 772-778.
Kozubek, A, Zarnowski, R., Stasiuk, M. y Gubernator, J. 2001. Natural amphiphilic phenols as bioactive compounds. Cellular and Molecular Biology Letters. 6: 351-355.
Lim, T.Y., Lim, Y.Y. y Yule, C.M. 2009. Evaluation of antioxidant, antibacterial and anti-tyrosinase activities of four Macaranga species. Food Chemistry.114: 594-599.
Lou, Z., Wang, H., Rao, S., Sun, J., Ma, C. y Li, J. 2012. p-coumaric acid kills bacteria through dual damage mechanisms. Food Control. 25: 550-554.
Maier, T., Göppert, A., Kammerer, D.R., Schieber, A. y Carle, R. 2008. Optimization of a process for enzyme-assisted pigment extraction from grape (Vitis vinifera L.) pomace. European Food Research Technology. 227: 267-275.
Marković, Z., Milenković, D., Đorović, J., Marković, J.M.D., Stepanić, V., Lučić, B., y Amić, D. 2012. PM6 and DFT study of free radical scavenging activity of morin. Food chemistry. 134: 1754-1760.
Martínez, L., Ros, G, y Nieto, G. 2015. Situación actual del empleo de aditivos sintéticos en preparados cárnicos y nuevas tendencias para la sustitución de los mismos. Eurocarne. 241: 49-55.
McCarthy, T.L., Kerry, J.P., Kerry, J.F., Lynch, P.B. y Buckley, D.J. 2001. Evaluation of the antioxidant potential of natural food/ plant extracts as compared with synthetic antioxidants and vitamin E in raw and cooked pork patties. Meat Science. 57: 45-52.
Medina de Dias, R., Zimmermann, M., Dupertuis, L., Espejo, C., Amadio, C., Raimondo, E. y Dip, G. 2003. Aceite esencial de tomillo como antioxidante y conservador en hamburguesas funcionales. Revista de la Facultad de Ciencias Agrarias de la Universidad Nacional de Cuyo. 35: 13-23.
Mendoza-Meza, D.L., Parra-Flórez, L. y Loza-Rosas, S. 2014. Free radical scavenging capacity of essential oil and ethanolic extracts of yacón (Smallanthus sonchifolius Poepp. & Endl) H. Robinson, cultivated in colombia. Biosalud.13: 9-23.
Negi, P.S. 2012. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. International Journal of Food Microbiology. 156: 7-17.
Ortega-Ramírez, L.A., Rodriguez-Garcia, I., Leyva, J.M., Cruz- Valenzuela, M.R., Silva-Espinoza, B.A., González-Aguilar, G.A., Siddiqui, Md.W. y Ayala-Zavala, J.F. 2014. Potential of medicinal plants as antimicrobial and antioxidant agents in food industry: A Hypothesis. Journal of Food Science. 79: R129-R137.
Pang, Y., Wang, D., Fan, Z., Chen, X., Yu, F., Hu, X., Wang, K. y Yuan, L. 2014. Blumea balsamifera-A phytochemical and pharmacological review. Molecules. 19: 9453-9477.
Peksel, A., Imamoglu, S., Kiymaz, N.A. y Orhan, N. 2013. Antioxidant and radical scavenging activities of Asphodelus aestivus Brot. extracts. International Journal of Food Properties. 16: 1339-1350.
Puri, M., Sharma, D. y Barrow, C.J. 2012. Enzyme-assisted extraction of bioactives from plants. Trends in Biotechnology. 30: 37-44.
Rao, A.S.V.C., Reddy, S.G., Babu, P.P. y Reddy, A.R. 2010. The antioxidant and antiproliferative activities of methanolic extracts from Njavara rice bran. BMC Complementary & Alternative Medicine. 4: 1-9.
Ramadan, M.F. 2012. Antiradical and antimicrobial properties of cold-pressed black cumin and cumin oils. European Food Research Technology: 234: 833-844.
Rice-Evans, C.A., Miller, N.J. y Paganga, G. 1996. Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology & Medicine. 7: 933-956.
Sánchez-Escalante, A., Djenane, D., Torrescano, G., Beltrán, J.A. y Roncalés, P. 2001. The effects of ascorbic acid, taurine, carnosine and rosemary powder on colour and lipid stability of beef patties packaged in modified atmosphere. Meat Science. 58: 421-429.
Sánchez-Escalante, A., Torrescano, G., Djenane, D., Beltrán, J.A., Giménez, B. y Roncalés, P. 2011. Effect of antioxidants and lighting conditions on color and lipid stability of beef patties packaged in high-oxygen modified atmosphere. CyTAJournal of Food. 9: 49-57.
Saucier, L. 2016. Microbial spoilage, quality and safety within the context of meat sustainability. Meat Science. 120: 78-84.
Sebranek, J.G., Sewalt, V.J.H., Robbins, K.L. y Houser, T.A. 2005. Comparison of a natural rosemary extract and BHA/BHT for relative antioxidant effectiveness in pork sausage. Meat Science. 2: 289-296.
Shah, M.A., Bosco, S.J.D. y Mir, S.A. 2015. Effect of Moringa oleifera leaf extract on the physicochemical properties of modified atmosphere packaged raw beef. Food Packaging and Shelf Life. 3: 31-38.
Simões, C.B., Mendes, dC.S. y Guedes, A.2010. Actividad antibacteriana in vitro de extractos brutos de especies de Eugenia sp frente a cepas de mollicutes. Revista Pan Amaz-Saude. 2: 33-39.
Skandamis, P.N. y Nychas, G.J.E. 2001. Effect of oregano essential oil on microbiological and physic-chemical attributes of minced meat stored in air and modified atmospheres. Journal of Applied Microbiology. 91: 1011-1022.
Skowyra, M., Falguera, V., Azman, N.A.M., Segovia, F. y Almajano, M.P. 2014. The effect of Perilla frutescens extract on the oxidative stability of model food emulsions. Antioxidants. 3: 38-54.
Sukhdev, S.H., Suman, P.S.K., Gennaro, L. y Dev, D.R. 2008. Extraction technologies for medicinal and aromatic plants. International Centre for Science and High Technology. Editorial ICS UNIDO. Trieste, Italy.
Sultana, B., Anwar, F. y Ashraf, M. 2009. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules. 14: 2167-2180.
Tan, L.H., Zhang, D., Yu, B., Zhao, S.P. y Cao, W.G. 2015. Antioxidant activity of the different polar solvent extracts of Magnolia officinalis leaves and purification of main active compounds. European Food Research and Technology. 240: 815-822.
Tane, P., Tatsimo, S.D., Ayimele, G.A. y Connolly, J.D. 2005. Bioactive metabolites from Aframomum species. In 11th NAPRECA Symposium Book of Proceedings. 214: 214-223.
Thongson, C., Davidson, P.M., Mahakarnchanakul, W. y Weiss, J. 2004. Antimicrobial activity of ultrasound‐assisted solventextracted spices. Letters in Applied Microbiology. 39: 401-406.
Tiaz, L., Zeiger, E. 2006. Secondary metabolites and plant defense. In: Plant Physiology, 4th ed. Sinauer Associates, pp. 283–308 (Chapter 13). Inc., Sunderland, Massachusetts.
Tiwari, B., Valdramidis, V., O´Donell, C.P., Muthukumarappan, K., Cullen, P.J. y Bourke, P. 2009. Application of natural antimicrobials for food preservation. Journal of Agriculture Food Chemistry. 14: 5987-6000.
Trabelsi, N., Megdiche, W., Ksouri, R., Falleh, H., Oueslati, S., Soumaya, B., Hajlaoui, G. y Abdelly, C. 2010. Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT-Food Science and Technology. 43: 632-639.
Tripoli, E., La Guardia, M., Giammanco, S., Di Majo, D. Giammanco, M. 2007. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food chemistry. 104: 466-479.
Vargas-Sánchez, R.D., Mendoza-Wilson, A.M., Torrescano-Urrutia, G.R. y Sánchez-Escalante, A. 2015. Antiradical potential of phenolic compounds fingerprints of propolis extracts: DFT approach. Computational and Theoretical Chemistry. 1066:7-13.
Vieitez, I., Maceiras, L., Jachmanián, I. y Alborés, S. 2018. Antioxidant and antibacterial activity of different extracts from herbs obtained by maceration or supercritical technology. The Journal of Supercritical Fluids. 133: 58-64.
Warnants, N., Van Oeckel, M.J. y Boucqué, C.V. 1996. Incorporation of dietary polyunsaturated fatty acids in pork tissues and its implications for the quality of the end products. Meat Science. 44: 125-144.
Xu, H.X. y Lee, S.F. 2001. Activity of plant flavonoids against antibiotic‐resistant bacteria. Phytotherapy Research. 15: 39-43.
Zeng, W.C., He, Q., Sun, Q., Zhong, K. y Gao, H. 2012. Antibacterial activity of wáter-soluble extract from pine needles of Cedrus deodara. International Journal Food Microbiology. 153: 78-84.
Zhang, H.F., Yang, X.H. y Wang, Y. 2011. Microwave assisted extraction of secondary metabolites from plants: current status and future directions. Trends in Food Science & Technology. 22: 672-688.
Zhang, H., Wu, J. y Guo, X. 2016. Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Science and Human Wellness. 5: 39-48.
Zhang, Z.Q., Xiang, J.J. y Zhou, L.M. 2015. Antioxidant activity of three components of wheat leaves: ferulic acid, flavonoids and ascorbic acid. Journal of Food Science and Technology. 52: 7297-7304.
Zheng, Y.Z., Zhou, Y., Liang, Q., Chen, D.F., Guo, R., Xiong, C.L., Xu, X.J., Zhang, Z.N. y Huang, Z.J. 2017. Solvent effects on the intramolecular hydrogen-bond and anti-oxidative properties of apigenin: A DFT approach. Dyes and Pigments. 141: 179-187.
Downloads
Published
How to Cite
Issue
Section
License
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.