Genetic structure of Zephyranthes fosteri, specie with ornamental and medicinal potential in Mexico

Authors

  • Martha Isabel Torres-Morán Instituto de Manejo y Aprovechamiento de los Recursos Fitogenéticos. Centro Universitario de Ciencias Biológicas y Agropecuarias. Universidad de Guadalajara. Camino Ramón Padilla Sánchez No. 2100 Nextipac, Zapopan, Jalisco. 45110. México
  • Ana Paulina Velasco-Ramírez Instituto de Manejo y Aprovechamiento de los Recursos Fitogenéticos. Centro Universitario de Ciencias Biológicas y Agropecuarias. Universidad de Guadalajara. Camino Ramón Padilla Sánchez No. 2100 Nextipac, Zapopan, Jalisco. 45110. México
  • Norma Almaraz-Abarca Centro Interdisciplinario de Investigacion para el Desarrollo Integral Regional (CIIDIR-IPNUnidad Durango), Departamento de Biotecnologia, Sigma s/n, Fraccionamiento 20 de Noviembre II, 34220, Durango, Durango, Mexico
  • Julio Yesua Anaya- Covarrubias Instituto de Manejo y Aprovechamiento de los Recursos Fitogenéticos. Centro Universitario de Ciencias Biológicas y Agropecuarias. Universidad de Guadalajara. Camino Ramón Padilla Sánchez No. 2100 Nextipac, Zapopan, Jalisco. 45110. México
  • Alejandro Velasco-Ramírez Instituto de Manejo y Aprovechamiento de los Recursos Fitogenéticos. Centro Universitario de Ciencias Biológicas y Agropecuarias. Universidad de Guadalajara. Camino Ramón Padilla Sánchez No. 2100 Nextipac, Zapopan, Jalisco. 45110. México

DOI:

https://doi.org/10.18633/biotecnia.v21i2.900

Keywords:

ornamental plants, ISSR, geophytes, Amaryllidaceae

Abstract

Zephyranthes fosteri is a wild species distributed in Mexico, it is popular for its ornamental quality. Anthropogenic activities perturbed its natural habitats and threaten its survival. At present time, there is not enough information about the genetic relationships and structure among Z. fosteri distributed in Mexico. The objective of this investigation was to elucidate the genetic relationships and structure among accessions of Z. fosteri collected in western and southeastern Mexico. ISSR markers were used to establish the genetic variability and genetic structure among 60 accessions randomly collected in western Mexico and one population found in southeastern Mexico. Jaccard’s coefficient and AMOVA analysis determined the similarity and variability among and within accessions, and Bayesian model was used to assess the genetic structure. A mean heterozygosity of 0.49 was found indicated a moderate variability. The AMOVA analysis showed that 75 % of this variability was within accessions, and 25 % among accessions. A 56.75 % polymorphism was detected with ISSR markers, and genetic structure analysis identified four genetic groups.

Downloads

Download data is not yet available.

References

Ávila, A. 2012. Yerba del coyote, veneno del perro: la evidencia léxica para identificar plantas en el códice de la Cruz Badiano. Acta Bot Mex 100: 489-526.

Balzarini, M.G., Di Rienzo, J.A. 2016. InfoGen. FCA, Universidad Nacional de Córdoba, Argentina. http://www.info-gen.com.ar. Accessed: 17 February 2016

Barrett, S.C.H., Khon, J.R. 1991. Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: D. A. Falk and K. A. Holsinger (eds). Genetics and conservation of rare plants. Oxford University Press, Oxford, United Kingdom. 30 p.

Basha, S.D., Francis, G.H.P.S., Makkar, K., Becker K., Sujatha, M. 2009. A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas L. germplasm from different countries. Plant Sci 176: 812-823.

Bastida, J., Lavilla, R., Viladomat, F. 2006. Chemical and biological aspects of Narcissus alkaloids. The Alkaloids: Chemistry and Biology 63: 87-179.

Brown, A.H.D., Weir, B.S. 1983. Measuring genetic variability in plant populations. In: S. D. Tanksley and T. J. Orton (eds.). Isozymes in Plant Genetics and Breeding, part A. Elsevier Science Publishers, Amsterdam, pp 219-239.

Bussell, J.D., Waycott, M., Chappill, J.A. 2005. Arbitrarily amplified DNA markers as characters for phylogenetics. Perspectives in Plant Ecology. Evolution and Systematics 7: 3-26.

Dandekar, A.M. 2003. Technologies for manipulating quality and productivity traits in horticultural crops. Acta Hortic 625: 293-305.

Debnath, S.C. 2006. Inter Simple Sequence Repeat (ISSR) to assess genetic diversity within a collection of wild lingonberry (Vaccinium vitis-idaea L.) clones. Can J of Plant Sci 148: 313-322.

Devarumath, R., Kalwade, S., Kawar, P., Sushir, K. 2012. Assessment of genetic diversity in sugarcane germplasm using ISSR and SSR markers. Sugar Tech 14: 334-344.

Earl, D.A., VonHoldt, B.M. 2012. STRUCTURE HARVESTER: a website and program for visualizing structure output and implementing the Evanno method. Conservation Genet Resources 4: 359-361.

Eid, S., Saar, D.E., Druffel, K.L., Pappu, H.R. 2011. Plant pararetroviral sequences in wild Dahlia species in their natural habitats in Mexican mountain ranges. Plant Pathol 60(2): 378-382.

Evanno, G.S., Regnaut., Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8): 2611-2620.

González, A., Wong, A., Delgado-Salinas, A., Papa, R., Gepts, P. 2005. Assessment of Inter Simple Sequence Repeat Markers to differentiate sympatric wild and domesticated populations of common bean. Crop Science 45: 606-615.

González, A., Souza, V., Aguirre, X. 2007. Inter Simple Sequence Repeats (ISSRs) (19). Ecología Molecular, México. Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Instituto de Ecología, UNAM, México, pp 567-571.

Hampl, V., Pavlícek, A., Flegr, J. 2001. Construction and Bootstrap analysis of DNA fingerprinting-based phylogenetic tress with the freeware program FreeTree: Application to Trichomonad parasites. Application to Trichomonad parasites. Int J Syst Evol Microbio 51: 731-5.

Heiser, C.H., Nelson, D.C. 1974. On the origin of the cultivated Chenopods (Chenopodium). Genetics 78: 503-505.

Hutchinson, J. 2003. The families of flowering plants. Clarendon, Oxford.

IPGRI. 2003. Genetic diversity analysis with molecular marker data: learning module. The International Plant Genetic Resources Institute and Cornell University, USA, pp 71.

Jae-Han, S., Kyong-Cheul, P., Sung-Il, L., Jong-Hwa, K., Nam-Soo, K. 2012. Species relationships among Allium species by ISSR analysis. Hortic Environ Biotechnol 53(3): 256-262.

Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. 1999. Plant systematics: a phylogenetic approach. Sinauer, Massachusetts.

Keb-Llanes, M., González, B., Chi-Manzanero, B., Infante, D.A. 2002. Rapid and simple method for small-scale DNA extraction in Agavaceae and other tropical plants. Plant Mol Biol Report 20: 299a-299e.

Kumar, S., Nair, N.K., Narayanan, S.J. 2010. ISSR polymorphism in Indian wild orange (Citrus indica Tanaka, (Rutaceae)) and related wild species in northeast India. Sci Hortic 123: 350- 359.

Martínez, G., Cúneo, P. 2009. Las denominaciones vernáculas y el conocimiento toba del entorno vegetal. Revista de dialectología y tradiciones populares 64(2): 149-168.

Mc Vaugh, R. 1989. Bromeliaceae to Discoreaceae. Flora Novo- Galiciana A descriptive account of the vascular plants of western de Mexico (15). The University of Michigan Herbarium, Ann Arbor, Michigan. 398.

Nelson, M.F., Anderson, N.O. 2013. How many marker loci are necessary? Analysis of dominant marker data sets using two popular population genetic algorithms 3(10): 3455-3470.

Nei, M. 1978. Estimation of average heterozygosity and genetic distance from small number of individuals. Genetics 89: 583- 590.

Ng, W.L., Tan, S.G. 2015. Inter-Simple Sequence Repeat (ISSR) markers: are we doing it right? ASM Science Journal 9(1): 30-39.

Padilla-Sánchez, A., Andrade-Rodriguez, M., Alia-Tejacal, I., Villegas-Torres, O.G., Guillen-Sánchez, D. 2016. Propagación vegetativa y sexual de mayito (Zephyranthes fosteri Traub y Zephyranthes lindleyana Herb.) (Amaryllidaceae). Acta Agricola y Pecuaria 2 (2): 34-42.

Peakall, R., Smouse, P.E. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537-2539.

Piperno, D.R. 2011. The origins of plant cultivation and domestication in the New World tropics patterns, process, and new developments. Curr Anthropol 52(4): S453-S470.

Porras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carrasedo, A., Lareu, M.V. 2013. An overview of STRUCTURE: applications, parameter settings, and supporting software. Frontiers in Genetics 4(98): 1-13.

Pritchard, J.K., Stephens, M., Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

Reif, J.C., Melchinger, A.E., Firsch, M. 2004. Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Sci 45: 17-7.

Rohlf, F.J. 2009. NTSYSpc: Numeral Taxonomy System. Ver. 2.21. Exeter Software. Stauket, New York.

Roldán-Ruiz, I., Dendauw, J., Van, B.E., Depicker, A., De Loose, M. 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding 6:125-134.

Sambrook, J., Russell, D.W. 2001. Molecular cloning: A laboratory manual. (Vol. 1). 3rd Ed. New York: Cold Spring Harbor, pp 1.1-7.94.

Sanguinetti, C.J., Neto, E.D., Simpson, A.J. 1994. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17: 914-921.

Sarwat, M., Das, S., Srivastava, P.S. 2008. Analysis of genetic diversity AFLP, SAMPL, ISSR and RAPD markers in Tribulus terrestris, a medicinal herb. Plant Cell Reports 27: 519-528.

Seyidoglu, S., Zencirkiran, M., Ayasligil, Y. 2009. Position and application areas of geophytes within landscape. African Journal of Agricultural Research 4(12): 1352-1357.

Takrouni, M.M., Boussaid, M. 2010. Genetic diversity and population structure in Tunisian strawberry tree (Arbutus unedo L.). Sci Hortic 126: 330-337.

Tapia-Campos, E., Rodríguez-Domínguez, JM., Revuelta-Arreola, M.M., Van-Tuyl, J., Barba-González, R. 2012. Mexican Geophytes II. The Genera Hymenocallis, Sprekelia and Zephyranthes. Floriculture and Ornamental Biotech 6(1): 129-138.

University of British Columbia. 2015. Ubc Issr Primer Set Cánada https://es.scribd.com/doc/155984113/Ubc-Issr-Primer-Set. Accessed: 12 January 2016.

University State the Ohio. 2000. ISSR Protocols. https://excelsior.asc.ohio-state.edu/~awolfe/ISSR/protocols.ISSR.html. Accessed: 12 January 2016.

Valadez-Moctezuma, E., Samahar, S., Luna-Paz, A. 2015. Genetic diversity of Opuntia spp. varieties assessed by classical marker tools (RAPD and ISSR). Plant Syst Evol 301: 737-747.

Valdés de la Cruz, M., Hernández Yuniet, A., Vázquez Lobo, D., Piñeiro, L., González-Pérez. 2010. Diversidad genética de especies silvestres del genero Nicotiana II: Caracterización molecular mediante marcadores RAPD. Protección Vegetal 25: 166-173.

Vargas-Ponce, O., Pérez-Álvarez, L.F., Zamora-Tavares, P., Rodríguez, A. 2011. Assessing genetic diversity in Mexican Husk tomato species. Plant Mol Biol Rep 29: 733-738.

Velasco-Ramírez, A.P., Torres-Morán, M.I., Molina-Moret, S., Sánchez-González, J.D.J., Santacruz-Ruvalcaba, F. 2014. Efficiency of RAPD, ISSR, AFLP and ISTR markers for the detection of polymorphisms and genetic relationships in camote de cerro (Dioscorea spp.). Electron J Biotechnol 17: 65-71.

Wu, Z.G., Li, X.X., Lin, X.C., Jiang, W., Tao, Z.M., Mantri, N., Fan, C.Y., Bao, Q.X. 2014. Genetic diversity analysis of yams (Dioscorea spp.) cultivated in China using ISSR and SRAP markers. Genet Resour Crop Evol 61: 639–650.

Downloads

Published

2019-04-01

How to Cite

Torres-Morán, M. I., Velasco-Ramírez, A. P., Almaraz-Abarca, N., Anaya- Covarrubias, J. Y., & Velasco-Ramírez, A. (2019). Genetic structure of Zephyranthes fosteri, specie with ornamental and medicinal potential in Mexico. Biotecnia, 21(2), 5–10. https://doi.org/10.18633/biotecnia.v21i2.900

Issue

Section

Research Articles

Metrics

Most read articles by the same author(s)