Silver nanoparticles coated with chitosan against Fusarium oxysporum causing the tomato wilt
DOI:
https://doi.org/10.18633/biotecnia.v22i3.952Keywords:
nanopartículas de plata, quitosano, Fusarium oxysporum, marchitez de planta de tomateAbstract
El daño por Fusarium oxysporum en las plantas de tomate es de gran importancia económica en todo el mundo debido a las importantes pérdidas que genera en el cultivo. Los avances en nanotecnología proporcionan alternativas que pueden aplicarse en el control de patógenos. Las nanopartículas de plata (AgNP) estabilizadas con quitosano (Cs) tienen actualmente un uso generalizado para el control de patógenos de plantas. El objetivo de la presente investigación fue determinar el efecto de la aplicación de AgNP-Cs sobre la tolerancia de plántulas de tomate y control de la marchitez vascular, provocada por el fitopatógeno. Los resultados mostraron que la aplicación de las NPs no mostró efectos negativos en el desarrollo vegetativo normal de las plántulas de tomate (hasta 2000 ppm). Las nanoestructuras fueron significativamente efectivas para inhibir el crecimiento del micelio hasta en más del 70%, además el tratamiento fue eficaz para reducir la gravedad de la enfermedad en plántulas inoculadas con Fusarium oxysporum después de 14 días post-inoculación.
Downloads
References
Al-Huqail, A. A., Hatata, M. M., Al-Huqail, A. A., & Ibrahim, M. M. 2018. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi journal of biological sciences, 25(2): 313-319.
Amini, J., & Sidovich, D. 2010. The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. Journal of plant protection research, 50(2): 172-178.
Anjum, N. A., Gill, S. S., Duarte, A. C., Pereira, E., & Ahmad, I. 2013. Silver nanoparticles in soil–plant systems. Journal of Nanoparticle Research, 15(9): 1896.
Anusuya, S., & Banu, K. N. 2016. Silver-chitosan nanoparticles induced biochemical variations of chickpea (Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology, 8: 39-44.
Berilli, S. S., Martineli, L., Ferraz, T. M., de Assis Figueiredo, F. A. M., Rodrigues, W. P., Berilli, A. P. C. G., de Sales, R. A., & de Jesus Freitas, S. 2018. Substrate stabilization using humus with tannery sludge in conilon coffee seedlings. Journal of Experimental Agriculture International: 1-10.
Bin Ahmad, M., Lim, J. J., Shameli, K., Ibrahim, N. A., & Tay, M. Y. 2011. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules, 16(9): 7237-7248.
Chattopadhyay, P., Banerjee, G., & Mukherjee, S. 2017. Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech, 7(1): 60.
Dasgupta, N., & Ramalingam, C. 2016. Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environmental chemistry letters, 14(4): 477-485.
De Farias, H. F., De Camargo, F. R., Silva, I. L., De Freitas Alves, S. M., Dos Santos, C. X., & Freitas, E. d. F. 2018. Use of alternative substrates in production of tomato seedlings. African Journal of Agricultural Research, 13(3): 90-94.
Goffeau, A. 2008. Drug resistance: the fight against fungi. Nature, 452(7187): 541.
Grün, A.-L., Manz, W., Kohl, Y. L., Meier, F., Straskraba, S., Jost, C., Drexel, R., & Emmerling, C. 2019. Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture. Environmental Sciences Europe, 31(1): 15.
Janaki, A. C., Sailatha, E., & Gunasekaran, S. 2015. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144: 17-22.
Jo, Y.-K., Kim, B. H., & Jung, G. 2009. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease, 93(10): 1037-1043.
Karimi, E., & Sadeghi, A. 2019. Toxicity Effect of Silver Nanoparticles on Two Plant Growth Promoting Streptomyces Spp. Strains, Phytopathogenic Fungi Fusarium Solani and Phytopathogenic Oomycetes Pythium aphanidermatum and Pythium ultimum. Modares Journal of Biotechnology, 10(1): 23-27.
Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., & Lee, Y. S. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40(1): 53-58.
Kumari, M., Giri, V. P., Pandey, S., Kumar, M., Katiyar, R., Nautiyal, C. S., & Mishra, A. 2019. An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pesticide biochemistry and physiology, 157: 45-52.
Malandrakis, A., Daskalaki, E. R., Skiada, V., Papadopoulou, K. K., & Kavroulakis, N. 2018. A Fusarium solani endophyte vs fungicides: Compatibility in a Fusarium oxysporum f. sp. radicis-lycopersici–tomato pathosystem. Fungal biology, 122(12): 1215-1221.
Medda, S., Hajra, A., Dey, U., Bose, P., & Mondal, N. K. 2015. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Applied Nanoscience, 5(7): 875-880.
Milewska-Hendel, A., Zubko, M., Stróż, D., & Kurczyńska, E. U. 2019. Effect of nanoparticles surface charge on the Arabidopsis thaliana (L.) roots development and their movement into the root cells and protoplasts. International journal of molecular sciences, 20(7): 1650.
Mishra, S., Singh, B. R., Naqvi, A. H., & Singh, H. 2017. Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Scientific reports, 7: 45154.
Nejad, M. S., Bonjar, G. H. S., Khatami, M., Amini, A., & Aghighi, S. 2016. In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. IET nanobiotechnology, 11(3): 236-240.
Omar, A. M., & Ahmed, A. I. 2014. Antagonistic and inhibitory effect of some plant rhizo-bacteria against different Fusarium isolates on Salvia officinalis. American-Eurasian Journal of Agricultural and Environmental Sciences, 14(12): 1437-1446.
Ouda, S. M. 2014. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Research Journal of Microbiology, 9(1): 34-42.
Pietrzak, K., Twarużek, M., Czyżowska, A., Kosicki, R., & Gutarowska, B. 2015. Influence of silver nanoparticles on metabolism and toxicity of moulds. Acta Biochimica Polonica, 62(4).
Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., Gorovtsov, A., Tsitsuashvili, V. S., Purvis, W. O., & Ghazaryan, K. A. 2018. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environmental Nanotechnology, Monitoring & Management, 9: 76-84.
Raliya, R., Nair, R., Chavalmane, S., Wang, W.-N., & Biswas, P. 2015. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 7(12): 1584-1594.
Shaikh, S., Nazam, N., Rizvi, S. M. D., Ahmad, K., Baig, M. H., Lee, E. J., & Choi, I. 2019. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. International journal of molecular sciences, 20(10): 2468.
Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J., & Lee, E. J. 2013. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and environmental safety, 93: 60-67.
Stampoulis, D., Sinha, S. K., & White, J. C. 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24): 9473-9479.
Tolaymat, T. M., El Badawy, A. M., Genaidy, A., Scheckel, K. G., Luxton, T. P., & Suidan, M. 2010. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Science of the Total Environment, 408(5): 999-1006.
Torrent, L., Marguí, E., Queralt, I., Hidalgo, M., & Iglesias, M. 2019. Interaction of silver nanoparticles with mediterranean agricultural soils: Lab-controlled adsorption and desorption studies. Journal of Environmental Sciences, 83: 205-216.
Tripathi, D. K., Tripathi, A., Singh, S., Singh, Y., Vishwakarma, K., Yadav, G., Sharma, S., Singh, V. K., Mishra, R. K., & Upadhyay, R. 2017. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Frontiers in microbiology, 8: 7.
Yang, Q., Xu, W., Liu, G., Song, M., Tan, Z., Mao, Y., Yin, Y., Cai, Y., Liu, J.-f., & Jiang, G. 2020. Transformation and uptake of silver nanoparticles and silver ions in rice plant (Oryza sativa L.): The effect of iron plaque and dissolved iron. Environmental Science: Nano.
Published
How to Cite
Issue
Section
License
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.