Nanopartículas de plata recubiertas con quitosano contra la marchitez vascular causada por Fusarium oxysporum en plantúlas de tomate

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v22i3.952

Palabras clave:

silver nanoparticles, Fusarium oxysporum, tomato wilt

Resumen

Fusarium wilt  in tomato seedlings is of great economic importance throughout the world due to the significant losses it causes in the crop. Advances in nanotechnology provide alternatives that can be applied in the control of pathogens. Silver nanoparticles (AgNP) stabilized with chitosan (Cs) are currently in widespread use for the control of plant pathogens.  The objective of the present investigation was to determine the effect of the application of Ag-Cs NPs on the tolerance of tomato seedlings and control of the vascular wilt caused by Fusarium oxysporum. The results showed that the application of the NPs did not show negative effects in the normal vegetative development of the tomato seedlings, in addition the treatment was effective to reduce the severity of the disease in inoculated Fusarium oxysporum seedlings.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

David Armando Encinas Basurto, Universidad Estatal de Sonora

-Ingeniero en Biotecnología por el Instituto Tecnológico de Sonora.

-Maestro en Ciencia en la coordinación de alimentos de origen vegetal.

- Doctor en Nanotecnología en la universidad de sonora

Fracisco Alvarez Carvajal, Universidad Estatal de Sonora

Ingeniero en Horticultura en la universidad estatal de sonora

Ana Armenta Calderon, Universidad Estatal de Sonora

Dra en Ciencias por el Centro de investigación en Alimentacion y Desarrollo.

Tania Elisa Gonzalez Soto, Universidad Estatal de Sonora

Doctorado en Ciencias Agropecuarias (Biotecnología Vegetal)

Universidad Autónoma del Estado de Baja California, Instituto de Ciencias Agrícolas, Mexicali, B.C.

Edgard Esquer Miranda, Universidad Estatal de Sonora

Dr en biotecnologia acuatica por la universidad estatal de sonora

Josue Juarez Onofre, Universidad de Sonora

Dr en Materiales por la universidad de santiago de compostela

Rogelio Mendez Ibarra, Universidad Estatal de Sonora

Maestro de la adminsitracion de la calidad por la universidad estatal de sonora

 

Jefe de carrera de ingeniero en horticultura

Citas

Al-Huqail, A. A., Hatata, M. M., Al-Huqail, A. A., & Ibrahim, M. M. 2018. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi journal of biological sciences, 25(2): 313-319.

Amini, J., & Sidovich, D. 2010. The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. Journal of plant protection research, 50(2): 172-178.

Anjum, N. A., Gill, S. S., Duarte, A. C., Pereira, E., & Ahmad, I. 2013. Silver nanoparticles in soil–plant systems. Journal of Nanoparticle Research, 15(9): 1896.

Anusuya, S., & Banu, K. N. 2016. Silver-chitosan nanoparticles induced biochemical variations of chickpea (Cicer arietinum L.). Biocatalysis and Agricultural Biotechnology, 8: 39-44.

Berilli, S. S., Martineli, L., Ferraz, T. M., de Assis Figueiredo, F. A. M., Rodrigues, W. P., Berilli, A. P. C. G., de Sales, R. A., & de Jesus Freitas, S. 2018. Substrate stabilization using humus with tannery sludge in conilon coffee seedlings. Journal of Experimental Agriculture International: 1-10.

Bin Ahmad, M., Lim, J. J., Shameli, K., Ibrahim, N. A., & Tay, M. Y. 2011. Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules, 16(9): 7237-7248.

Chattopadhyay, P., Banerjee, G., & Mukherjee, S. 2017. Recent trends of modern bacterial insecticides for pest control practice in integrated crop management system. 3 Biotech, 7(1): 60.

Dasgupta, N., & Ramalingam, C. 2016. Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environmental chemistry letters, 14(4): 477-485.

De Farias, H. F., De Camargo, F. R., Silva, I. L., De Freitas Alves, S. M., Dos Santos, C. X., & Freitas, E. d. F. 2018. Use of alternative substrates in production of tomato seedlings. African Journal of Agricultural Research, 13(3): 90-94.

Goffeau, A. 2008. Drug resistance: the fight against fungi. Nature, 452(7187): 541.

Grün, A.-L., Manz, W., Kohl, Y. L., Meier, F., Straskraba, S., Jost, C., Drexel, R., & Emmerling, C. 2019. Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture. Environmental Sciences Europe, 31(1): 15.

Janaki, A. C., Sailatha, E., & Gunasekaran, S. 2015. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 144: 17-22.

Jo, Y.-K., Kim, B. H., & Jung, G. 2009. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease, 93(10): 1037-1043.

Karimi, E., & Sadeghi, A. 2019. Toxicity Effect of Silver Nanoparticles on Two Plant Growth Promoting Streptomyces Spp. Strains, Phytopathogenic Fungi Fusarium Solani and Phytopathogenic Oomycetes Pythium aphanidermatum and Pythium ultimum. Modares Journal of Biotechnology, 10(1): 23-27.

Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., & Lee, Y. S. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40(1): 53-58.

Kumari, M., Giri, V. P., Pandey, S., Kumar, M., Katiyar, R., Nautiyal, C. S., & Mishra, A. 2019. An insight into the mechanism of antifungal activity of biogenic nanoparticles than their chemical counterparts. Pesticide biochemistry and physiology, 157: 45-52.

Malandrakis, A., Daskalaki, E. R., Skiada, V., Papadopoulou, K. K., & Kavroulakis, N. 2018. A Fusarium solani endophyte vs fungicides: Compatibility in a Fusarium oxysporum f. sp. radicis-lycopersici–tomato pathosystem. Fungal biology, 122(12): 1215-1221.

Medda, S., Hajra, A., Dey, U., Bose, P., & Mondal, N. K. 2015. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Applied Nanoscience, 5(7): 875-880.

Milewska-Hendel, A., Zubko, M., Stróż, D., & Kurczyńska, E. U. 2019. Effect of nanoparticles surface charge on the Arabidopsis thaliana (L.) roots development and their movement into the root cells and protoplasts. International journal of molecular sciences, 20(7): 1650.

Mishra, S., Singh, B. R., Naqvi, A. H., & Singh, H. 2017. Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Scientific reports, 7: 45154.

Nejad, M. S., Bonjar, G. H. S., Khatami, M., Amini, A., & Aghighi, S. 2016. In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. IET nanobiotechnology, 11(3): 236-240.

Omar, A. M., & Ahmed, A. I. 2014. Antagonistic and inhibitory effect of some plant rhizo-bacteria against different Fusarium isolates on Salvia officinalis. American-Eurasian Journal of Agricultural and Environmental Sciences, 14(12): 1437-1446.

Ouda, S. M. 2014. Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Research Journal of Microbiology, 9(1): 34-42.

Pietrzak, K., Twarużek, M., Czyżowska, A., Kosicki, R., & Gutarowska, B. 2015. Influence of silver nanoparticles on metabolism and toxicity of moulds. Acta Biochimica Polonica, 62(4).

Rajput, V. D., Minkina, T. M., Behal, A., Sushkova, S. N., Mandzhieva, S., Singh, R., Gorovtsov, A., Tsitsuashvili, V. S., Purvis, W. O., & Ghazaryan, K. A. 2018. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environmental Nanotechnology, Monitoring & Management, 9: 76-84.

Raliya, R., Nair, R., Chavalmane, S., Wang, W.-N., & Biswas, P. 2015. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 7(12): 1584-1594.

Shaikh, S., Nazam, N., Rizvi, S. M. D., Ahmad, K., Baig, M. H., Lee, E. J., & Choi, I. 2019. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. International journal of molecular sciences, 20(10): 2468.

Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J., & Lee, E. J. 2013. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and environmental safety, 93: 60-67.

Stampoulis, D., Sinha, S. K., & White, J. C. 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24): 9473-9479.

Tolaymat, T. M., El Badawy, A. M., Genaidy, A., Scheckel, K. G., Luxton, T. P., & Suidan, M. 2010. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Science of the Total Environment, 408(5): 999-1006.

Torrent, L., Marguí, E., Queralt, I., Hidalgo, M., & Iglesias, M. 2019. Interaction of silver nanoparticles with mediterranean agricultural soils: Lab-controlled adsorption and desorption studies. Journal of Environmental Sciences, 83: 205-216.

Tripathi, D. K., Tripathi, A., Singh, S., Singh, Y., Vishwakarma, K., Yadav, G., Sharma, S., Singh, V. K., Mishra, R. K., & Upadhyay, R. 2017. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Frontiers in microbiology, 8: 7.

Yang, Q., Xu, W., Liu, G., Song, M., Tan, Z., Mao, Y., Yin, Y., Cai, Y., Liu, J.-f., & Jiang, G. 2020. Transformation and uptake of silver nanoparticles and silver ions in rice plant (Oryza sativa L.): The effect of iron plaque and dissolved iron. Environmental Science: Nano.

Publicado

2020-09-21

Cómo citar

Encinas Basurto, D. A., Alvarez Carvajal, F., Armenta Calderon, A., Gonzalez Soto, T. E., Esquer Miranda, E., Juarez Onofre, J., & Mendez Ibarra, R. (2020). Nanopartículas de plata recubiertas con quitosano contra la marchitez vascular causada por Fusarium oxysporum en plantúlas de tomate. Biotecnia, 22(3), 73–80. https://doi.org/10.18633/biotecnia.v22i3.952

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.