Efecto de las mezclas de agentes encapsulantes en la estabilidad y bioaccesibilidad del b-caroteno encapsulado mediante liofilización
DOI:
https://doi.org/10.18633/biotecnia.v27.2454Palabras clave:
microencapsulación, biopolímeros, sistemas de entrega de compuestos fenólicos, digestión in vitro, retenciónResumen
El b-caroteno es el carotenoide más distribuido en los alimentos y se caracteriza por sus propiedades antioxidantes y nutrimentales por lo que su consumo presenta beneficios para la salud. Sin embargo, este es sensible a factores como la presencia de oxígeno, de luz y temperaturas elevadas. Por lo anterior, el objetivo del presente estudio fue estudiar el proceso de encapsulación del b-caroteno mediante liofilización, utilizando maltodextrina y mezclas con otros agentes encapsulantes, evaluando la eficiencia de encapsulación, la estabilidad del b-caroteno encapsulado durante el almacenamiento a temperatura ambiente (30 °C) y de refrigeración (8 °C), la actividad antioxidante y su bioaccesibilidad. Los resultados mostraron que las mezclas de maltodextrina-goma Arábiga y maltodextrina-proteína de soya presentaron mayor eficiencia de encapsulación (50.40±3.96 y 49.18±5.18%) respectivamente. Mientras que, la mezcla maltodextrina-leche de soya permitió mantener la mayor concentración de b-caroteno al final del estudio, así como el que presentó mayor actividad antioxidante (AA). De igual manera, esta mezcla presentó la mayor bioaccesibilidad del b-caroteno en la fase intestinal. Por lo tanto, el uso de distintos agentes encapsulantes para la encapsulación mediante liofilización podría utilizarse como un sistema de protección y de liberación controlada para compuestos sensibles liposolubles.
Descargas
Citas
Al-Maqtari, Q.A., Mohammed, J.K., Mahdi, A.A., Al-Ansi, W., Zhang, M., Al-Adeeb, A., Wei, M., Phyo, H.M. and Yao, W. 2021. Physicochemical properties, microstructure, and storage stability of Pulicaria jaubertii extract microencapsulated with different protein biopolymers and gum arabic as wall materials. International Journal of Biological Macromolecules. 187: 939–954.
Biehler, E., and Bohn, T. 2010. Methods for Assessing Aspects of Carotenoid Bioavailability. Current Nutrition and Food Science, 6(1): 44–69.
Bockuviene, A. and Sereikaite, J. 2020. New β-carotene-chitooligosaccharides complexes for food forti-fication: Stability study. Foods. 9(6).
Boon, C.S., McClements, D.J., Weiss, J. and Decker, E.A. 2010. Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition. 50(6): 515–532.
Carneiro, H.C.F., Tonon, R. V., Grosso, C.R.F. and Hubinger, M.D. 2013. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering. 115(4): 443–451.
Correâ-Filho, L.C., Lourenço, M.M., Moldaõ-Martins, M. and Alves, V.D. 2019. Microencapsulation of β-carotene by spray drying: effect of wall material concentration and drying inlet temperature. In-ternational Journal of Food Science. 2019: Article ID 8914852.
Daood, H.G., Bencze, G., Palotás, G., Pék, Z., Sidikov, A., and Helyes, L. 2014. HPLC analysis of ca-rotenoids from tomatoes using cross-linked C18 column and MS detection. Journal of Chromato-graphic Science. 52(9): 985–991.
Donhowe, E.G., and Kong, F. 2014. Beta-carotene: digestion, microencapsulation, and in vitro bioavaila-bility. In Food and Bioprocess Technology (Vol. 7, Issue 2, pp. 338–354). Springer New York LLC.
Fredes, C., Becerra, C., Parada, J., and Robert, P. 2018. The microencapsulation of maqui (Aristotelia chilensis (Mol.) Stuntz) juice by spray-drying and freeze-drying produces powders with similar anthocyanin stability and bioaccessibility. Molecules. 23(5): 1227.
Harnkarnsujarit, N., Charoenrein, S., and Roos, Y.H. 2012. Porosity and water activity effects on stability of crystalline β‐carotene in freeze‐dried solids. Journal of Food Science. 77(11): E313-E320
Hou, Z., Liu, Y., Lei, F., and Gao, Y. 2014. Investigation into the in vitro release properties of β-carotene in emulsions stabilized by different emulsifiers. LWT - Food Science and Technology. 59(2): 867–873.
Huang, Y., and Zhou, W. 2019. Microencapsulation of anthocyanins through two-step emulsification and release characteristics during in vitro digestion. Food Chemistry. 278: 357–363.
Judde, A., Villeneuve, P., Rossignol‐Castera, A. and Guillou, A.L. 2003. Antioxidant effect of soy leci-thins on vegetable oil stability and their synergism with tocopherols. Journal of the American Oil Chemists Society. 80(12): 1209–1215.
Konaré, M.A., Condurache, N.N., Togola, I., Păcularu-Burada, B., Diarra, N., Stănciuc, N., and Râpeanu, G. 2023. Valorization of bioactive compounds from two underutilized wild fruits by microencap-sulation in order to formulate value-added food products. Plants. 12(2): 267.
Liang, R., Huang, Q., Ma, J., Shoemaker, C.F. and Zhong, F. 2013. Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions. Food Hydrocolloids. 33(2): 225–233.
Lin, Q., Wu, D., Singh, H. and Ye, A. 2021. Improving solubility and stability of β-carotene by microen-capsulation in soluble complexes formed with whey protein and OSA-modified starch. Food Chemistry. 352: 129267
Mahfoudhi, N. and Hamdi, S. 2015. Kinetic degradation and storage stability of β-carotene encapsulated by freeze-drying using almond gum and gum Arabic as wall materials. Journal of Food Processing and Preservation. 39(6): 896–906.
Mansour, M., Salah, M., and Xu, X. 2020. Effect of microencapsulation using soy protein isolate and gum arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gas-trointestinal conditions. Ultrasonics Sonochemistry. 63: 104927.
Martínez-Molina, E.C., Freile-Pelegrín, Y., Ovando-Chacón, S.L., Gutiérrez-Miceli, F.A., Ruiz-Cabrera, M.A., Grajales-Lagunes, A., Luján-Hidalgo, M.C., and Abud-Archila, M. 2022. Development and characterization of alginate-based edible film from Sargassum fluitans incorporated with silver nanoparticles obtained by green synthesis. Journal of Food Measurement and Characterization. 16: 126–136.
Mao, L., Wang, D., Liu, F., and Gao, Y. 2018. Emulsion design for the delivery of β-carotene in complex food systems. Critical Reviews in Food Science and Nutrition. 58(5): 770–784.
Mendoza-Avendaño, C., Meza-Gordillo, R., Ovando-Chacón, S.L., Luján-Hidalgo, M.C., Ruiz-Cabrera, M.A., Grajales-Lagunes, A., Ruiz-Valdiviezo, V.M., Gutiérrez-Miceli, F.A. and Abud-Archila, M. 2019. Evaluation of bioactive and anti-nutritional compounds during soymilk fermentation with Lactobacillus plantarum BAL-03-ITTG and Lactobacillus fermentum BAL-21-ITTG. Revista Mexicana de Ingeniera Quimica. 18(3): 967–978.
Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., and Brodkorb, A. 2014. A standardised static in vitro digestion method suitable for food – an international consensus. Food Functional. 5(6): 1113–1124.
Navarro-Flores, M.J., Ventura-Canseco, L.M.C., Meza-Gordillo, R., Ayora-Talavera, T. del R. and Abud-Archila, M. 2020. Spray drying encapsulation of a native plant extract rich in phenolic compounds with combinations of maltodextrin and non-conventional wall materials. Journal of Food Science and Technology. 57(11): 4111–4122.
Nishinari, K., Fang, Y., Guo, S., and Phillips, G.O. 2014. Soy proteins: A review on composition, aggre-gation and emulsification. Food Hydrocolloids. 39: 301–318.
Norma Oficial Mexicana NOM-116-SSA1-1994. 1994. Bienes y servicios. Determinación de humedad en alimentos por tratamiento térmico. Método por arena o gasa.
Pan-utai, W., and Iamtham, S. 2020. Enhanced microencapsulation of c-phycocyanin from Arthrospira by freeze-drying with different wall materials. Food Technology and Biotechnology. 58(4): 423–432.
Picot, A., and Lacroix, C. 2004. Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal. 14(6): 505–515.
Ramoneda, X.A., Ponce-Cevallos, P.A., Buera, M. del P. and Elizalde, B.E. 2011. Degradation of β-carotene in amorphous polymer matrices. Effect of water sorption properties and physical state. Journal of the Science of Food and Agriculture. 91(14): 2587–2593.
Rezvankhah, A., Emam-Djomeh, Z., and Askari, G. 2020. Encapsulation and delivery of bioactive com-pounds using spray and freeze-drying techniques: A review. Drying Technology. 38(1–2): 235–258.
Santos, P.D. de F., Rubio, F.T.V., da Silva, M.P., Pinho, L.S., and Favaro-Trindade, C. 2021. Microen-capsulation of carotenoid-rich materials: A review. In Food Research International (Vol. 147). El-sevier Ltd.
Soukoulis, C., and Bohn, T. 2018. A comprehensive overview on the micro- and nano-technological en-capsulation advances for enhancing the chemical stability and bioavailability of carotenoids. Criti-cal Reviews in Food Science and Nutrition. 58(1): 1–36.
Sousa de Oliveira, T., Freitas-Silva, O., Mendonça Kluczkovski, A. and Henrique Campelo, P. 2020. Po-tential use of vegetable proteins to reduce Brazil nut oil oxidation in microparticle systems. Food Research International. 137: 109526.
Stoica, F., Condurache, N.N., Horincar, G., Constantin, O.E., Turturică, M., Stănciuc, N., Aprodu, I., Croitoru, C., and Râpeanu, G. 2022. Value-added crackers enriched with red onion skin anthocy-anins entrapped in different combinations of wall materials. Antioxidants. 11(6): 1048.
Tomovska, J., Gjorgievski, N. and Makarijoski, B. 2016. Examination of pH, titratable acidity and anti-oxidant activity in fermented milk. Journal of Materials Science and Engineering A. 6(6): 326-333.
Yamashita, C., Chung, M.M.S., dos Santos, C., Mayer, C.R.M., Moraes, I.C.F., and Branco, I.G. 2017. Microencapsulation of an anthocyanin-rich blackberry (Rubus spp.) by-product extract by freeze-drying. LWT Food Science and Technology. 84: 256–262
Zhang, C., Fu, Y., Li, Zeya, Li, T., Shi, Y., Xie, H., Li, Y., Su, H. and Li, Zhenpeng. 2021. Application of whey protein isolate fibrils in encapsulation and protection of β-carotene. Food Chemistry. 346: 128963
Zhu, Y., Peng, Y., Wen, J. and Quek, S.Y. 2021. A comparison of microfluidic-jet spray drying, two-fluid nozzle spray drying, and freeze-drying for co-encapsulating β-carotene, lutein, zeaxan-thin, and fish oil. Foods. 10(7): 1522.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)