Métodos de preparación de nanopartículas de quitosano: una revisión

Autores/as

  • Francisco J. Caro-León Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Ejido La Victoria Km 0.6, C.P. 83000, Hermosillo, Sonora, MéxicoUniversidad Estatal de Sonora, Av. Ley Federal del Trabajo s/n Col. Apolo, C.P. 83100, Hermosillo, Sonora, México https://orcid.org/0000-0001-8027-1502
  • Luis M. López-Martínez Universidad de Sonora, Departamento de Investigación en Polímeros y Materiales, Blvd. Luis Encinas y Rosales s/n Col. Centro, C.P. 83000, Hermosillo, Sonora, MéxicoUniversidad Estatal de Sonora, Av. Ley Federal del Trabajo s/n Col. Apolo, C.P. 83100, Hermosillo, Sonora, México. https://orcid.org/0000-0002-1422-8597
  • Jaime Lizardi-Mendoza Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Ejido La Victoria Km 0.6, C.P. 83000, Hermosillo, Sonora, México https://orcid.org/0000-0003-4636-4371
  • Waldo Argüelles-Monal Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6 Col. Las Playitas, C.P. 85480, Guaymas, Sonora, México https://orcid.org/0000-0002-8356-1123
  • Francisco M. Goycoolea-Valencia University of Leeds, School of Food Science and Nutrition, LS2 9JT, Woodhouse Ln, Leeds, United Kingdom https://orcid.org/0000-0001-7949-5429
  • Elizabeth Carvajal-Millán Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Ejido La Victoria Km 0.6, C.P. 83000, Hermosillo, Sonora, México https://orcid.org/0000-0003-4390-7457
  • Yolanda L. López-Franco Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Ejido La Victoria Km 0.6, C.P. 83000, Hermosillo, Sonora, México https://orcid.org/0000-0002-3934-4578

DOI:

https://doi.org/10.18633/biotecnia.v21i3.1007

Palabras clave:

quitosano, nanopartículas, construcción, deconstrucción

Resumen

El quitosano es un polisacárido natural que ha sido utilizado frecuentemente en el desarrollo de distintos materiales, debido a sus excepcionales propiedades fisicoquímicas y biológicas. Las nanopartículas de quitosano son generalmente producidas por estrategias denominadas de construcción (del inglés “bottom up”), donde el ensamblado polimérico es promovido por distintas interacciones moleculares. Sin embargo, un grupo de estrategias llamadas de deconstrucción (del inglés “top-down”) basadas en la fragmentación de estructuras macroscópicas, han generado un gran interés recientemente como alternativa para la obtención de nanomateriales. El presente trabajo hace una revisión bibliográfica de los resultados obtenidos por distintas investigaciones sobre la producción de sistemas de nanopartículas basadas en quitosano durante las últimas décadas. Las evidencias demostraron que las nanopartículas de quitosano juegan un papel preponderante en la investigación de los nanomateriales poliméricos con aplicaciones biomédicas y farmacéuticas, debido a la gran diversidad de métodos de obtención existentes que determinan las propiedades de los materiales, tales como tamaño de partícula, capacidad de incorporación y liberación de compuestos bioactivos, carga superficial, mucoadhesividad, entre otras.

Citas

Anitha, A., Deepa, N., Chennazhi, K.P., Lakshmanan, V.-K., Jayakumar, R. 2014. Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim. Biophys. Acta 1840, 2730–2743. https://doi.org/10.1016/j.bbagen.2014.06.004.

Anto-Shering, M., Kannan, C., Sabari Kumar, K., Sathish Kumar, V., Suganeshwari, M. 2011. Formulation of 5-fluorouracil Loaded Chitosan Nanoparticles By Emulsion Droplet Coalescence Method For Cancer Therapy. Int. J. Pharm. Biol. Arch. 2, 926–931.

Bagre, A.P., Jain, K., Jain, N.K. 2013. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int. J. Pharm. 456, 31–40. https://doi.org/10.1016/j.ijpharm.2013.08.037.0

Barbari, G.R., Dorkoosh, F.A., Amini, M., Sharifzadeh, M., Atyabi, F., Balalaie, S., Rafiee Tehrani, N., Rafiee Tehrani, M. 2017. A novel nanoemulsion-based method to produce ultrasmall, water-dispersible nanoparticles from chitosan, surface modified with cell-penetrating peptide for oral delivery of proteins and peptides. Int. J. Nanomedicine 12, 3471–3483. https://doi.org/10.2147/IJN.S116063.

Bento, D., Staats, H.F., Gonçalves, T., Borges, O. 2015. Development of a novel adjuvanted nasal vaccine: C48/80 associated with chitosan nanoparticles as a path to enhance mucosal immunity. Eur. J. Pharm. Biopharm. 93, 149–164. https://doi.org/10.1016/j.ejpb.2015.03.024.

Berthold, A., Cremer, K., Kreuter, J. 1996. Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs. J. Controlled Release 39, 17–25. https://doi.org/10.1016/0168-3659(95)00129-8.

Birch, N.P., Schiffman, J.D. 2014. Characterization of self-assembled polyelectrolyte complex nanoparticles formed from chitosan and pectin. Langmuir 30, 3441–3447. https://doi.org/10.1021/la500491c.

Borges, O., Borchard, G., Verhoef, J.C., de Sousa, A., Junginger, H.E. 2005. Preparation of coated nanoparticles for a new mucosal vaccine delivery system. Int. J. Pharm. 299, 155–166. https://doi.org/10.1016/j.ijpharm.2005.04.037.

Borges, O., Silva, M., de Sousa, A., Borchard, G., Junginger, H.E., Cordeiro-da-Silva, A. 2008. Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvant for hepatitis B surface antigen. Int. Immunopharmacol. 8, 1773–1780. https://doi.org/10.1016/j.intimp.2008.08.013.

Bowman, K., Leong, K.W. 2006. Chitosan nanoparticles for oral drug and gene delivery. Int. J. Nanomedicine 1, 117–128.

Bravo-Osuna, I., Vauthier, C., Farabollini, A., Palmieri, G.F., Ponchel, G. 2007. Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials 28, 2233–2243. https://doi.org/10.1016/j.biomaterials.2007.01.005.

Calvo, P., Remuñán-López, C., Vila-Jato, J.L., Alonso, M.J. 1997. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63, 125–132. https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4.

Canelas, D.A., Herlihy, K.P., DeSimone, J.M. 2009. Top-down particle fabrication: control of size and shape for diagnostic imaging and drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 391–404. https://doi.org/10.1002/wnan.40.

Caro-León, F.J., Lizardi-Mendoza, J., Argüelles-Monal, W., Carvajal-Millan, E., Franco, Y.L.L., Goycoolea, F.M. 2017. Supercritical CO2 dried chitosan nanoparticles: production and characterization. RSC Adv. 7, 30879–30885. https://doi.org/10.1039/C7RA02555F.

Caro-León, F.J., Argüelles-Monal, W., Carvajal-Millán, E., López- Franco, Y.L., Goycoolea-Valencia, F.M., San Román del Barrio, J., Lizardi-Mendoza, J. 2018. Production and characterization of supercritical CO2 dried chitosan nanoparticles as novel carrier device. Carbohydr. Polym. 198, 556–562. https://doi.org/10.1016/j.carbpol.2018.06.102.

Cavalli, R., Leone, F., Minelli, R., Fantozzi, R., Dianzani, C. 2014. New Chitosan Nanospheres for the Delivery of 5-Fluorouracil: Preparation, Characterization and in vitro Studies. Curr. Drug Deliv. 11, 270–278. https://doi.org/10.2174/1567201811666140206103609.

Chang, X., Chen, D., Jiao, X. 2008. Chitosan-Based Aerogels with High Adsorption Performance. J. Phys. Chem. B 112, 7721–7725. https://doi.org/10.1021/jp8011359.

Chantarasataporn, P., Tepkasikul, P., Kingcha, Y., Yoksan, R., Pichyangkura, R., Visessanguan, W., Chirachanchai, S. 2014. Water-based oligochitosan and nanowhisker chitosan as potential food preservatives for shelf-life extension of minced pork. Food Chem. 159, 463–470. https://doi.org/10.1016/j.foodchem.2014.03.019.

Chua, B.Y., Al Kobaisi, M., Zeng, W., Mainwaring, D., Jackson, D.C. 2012. Chitosan microparticles and nanoparticles as biocompatible delivery vehicles for peptide and protein-based immunocontraceptive vaccines. Mol. Pharm. 9, 81–90. https://doi.org/10.1021/mp200264m.

Das, S., Heasman, P., Ben, T., Qiu, S. 2017. Porous Organic Materials: Strategic Design and Structure–Function Correlation. Chem. Rev. 117, 1515–1563. https://doi.org/10.1021/acs.chemrev.6b00439.

de la Fuente, M., Seijo, B., Alonso, M.J. 2008. Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest. Ophthalmol. Vis. Sci. 49, 2016–2024. https://doi.org/10.1167/iovs.07-1077.

Delair, T. 2011. Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Für Pharm. Verfahrenstechnik EV 78, 10–18. https://doi.org/10.1016/j.ejpb.2010.12.001.

Divya, K., Jisha, M.S. 2018. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 16, 101–112. https://doi.org/10.1007/s10311-017-0670-y.

El-Shabouri, M.H. 2002. Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int. J. Pharm. 249, 101–108.

Ennajih, H., Bouhfid, R., Essassi, E.M., Bousmina, M., El Kadib, A. 2012. Chitosan–montmorillonite bio-based aerogel hybrid microspheres. Microporous Mesoporous Mater. 152, 208–213. https://doi.org/10.1016/j.micromeso.2011.11.032.

Fonte, P., Reis, S., Sarmento, B. 2016. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J. Controlled Release 225, 75–86. https://doi.org/10.1016/j.jconrel.2016.01.034.

Franks, F. 1998. Freeze-drying of bioproducts: putting principles into practice. Eur. J. Pharm. Biopharm. 45, 221–229. https://doi.org/10.1016/S0939-6411(98)00004-6.

Fülöp, Z., Saokham, P., Loftsson, T. 2014. Sulfobutylether-β- cyclodextrin/chitosan nano- and microparticles and their physicochemical characteristics. Int. J. Pharm. 472, 282–287. https://doi.org/10.1016/j.ijpharm.2014.06.039.

Garcia-Fuentes, M., Alonso, M.J. 2012. Chitosan-based drug nanocarriers: where do we stand? J. Control. Release Off. J. Control. Release Soc. 161, 496–504. https://doi.org/10.1016/j.jconrel.2012.03.017.

Garg, T., Rath, G., Goyal, A.K. 2016. Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artif. Cells Nanomedicine Biotechnol. 44, 997–1001. https://doi.org/10.3109/21691401.2015.1008508.

Ge, H., Hua, T., Chen, X. 2016. Selective adsorption of lead on grafted and crosslinked chitosan nanoparticles prepared by using Pb2+ as template. J. Hazard. Mater. 308, 225–232. https://doi.org/10.1016/j.jhazmat.2016.01.042.

Goycoolea, F.M., Lollo, G., Remuñán-López, C., Quaglia, F., Alonso, M.J. 2009. Chitosan-Alginate Blended Nanoparticles as Carriers for the Transmucosal Delivery of Macromolecules. Biomacromolecules 10, 1736–1743. https://doi.org/10.1021/bm9001377.

Grenha, A., Seijo, B., Serra, C., Remuñan-López, C. 2007. Chitosan nanoparticle-loaded mannitol microspheres: structure and surface characterization. Biomacromolecules 8, 2072–2079. https://doi.org/10.1021/bm061131g.

Grenha, A., Gomes, M.E., Rodrigues, M., Santo, V.E., Mano, J.F., Neves, N.M., Reis, R.L. 2010. Development of new chitosan/ carrageenan nanoparticles for drug delivery applications. J. Biomed. Mater. Res. A 92A, 1265–1272. https://doi.org/10.1002/jbm.a.32466.

Grenha, A. 2012. Chitosan nanoparticles: a survey of preparation methods. J. Drug Target. 20, 291–300. https://doi.org/10.3109/1061186X.2011.654121.

Hood, M.A., Landfester, K., Muñoz-Espí, R. 2018. Chitosan nanoparticles affect polymorph selection in crystallization of calcium carbonate. Colloids Surf. Physicochem. Eng. Asp. 540, 48–52. https://doi.org/10.1016/j.colsurfa.2017.12.048.

Hu, Y., Jiang, X., Ding, Y., Ge, H., Yuan, Y., Yang, C. 2002. Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles. Biomaterials 23, 3193–3201. https://doi.org/10.1016/S0142-9612(02)00071-6.

Huang, H.-Y., Shieh, Y.-T., Shih, C.-M., Twu, Y.-K. 2010. Magnetic chitosan/iron (II, III) oxide nanoparticles prepared by spray-drying. Carbohydr. Polym. 81, 906–910. https://doi.org/10.1016/j.carbpol.2010.04.003.

Jain, A., Thakur, K., Kush, P., Jain, U.K. 2014. Docetaxel loaded chitosan nanoparticles: formulation, characterization and cytotoxicity studies. Int. J. Biol. Macromol. 69, 546–553. https://doi.org/10.1016/j.ijbiomac.2014.06.029.

Jiang, L., Duan, H., Ji, X., Wang, T., Wang, Y., Qiu, J. 2018. Application of a simple desolvation method to increase the formation yield, physical stability and hydrophobic drug encapsulation capacity of chitosan-based nanoparticles. Int. J. Pharm. 545, 117–127. https://doi.org/10.1016/j.ijpharm.2018.03.044.

Kim, T.-H., Jiang, H.-L., Jere, D., Park, I.-K., Cho, M.-H., Nah, J.-W., Choi, Y.-J., Akaike, T., Cho, C.-S. 2007. Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog. Polym. Sci. 32, 726–753. https://doi.org/10.1016/j.progpolymsci.2007.05.001.

Kim, J.-H., Kim, Y.-S., Park, K., Lee, S., Nam, H.Y., Min, K.H., Jo, H.G., Park, J.H., Choi, K., Jeong, S.Y., Park, R.-W., Kim, I.-S., Kim, K., Kwon, I.C. 2008. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J. Controlled Release 127, 41–49. https://doi.org/10.1016/j.jconrel.2007.12.014.

Kumar, N., Parthiban, S., Kumar, G.S., Mani, T.T. 2016. Ocular Drug Delivery of Levofloxacin Loaded Chitosan Nanoparticle by Emulsion Solvent Diffusion Method. Imp. J. Interdiscip. Res. 2.

Lavertu, M., Méthot, S., Tran-Khanh, N., Buschmann, M.D. 2006. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation. Biomaterials 27, 4815– 4824. https://doi.org/10.1016/j.biomaterials.2006.04.029.

Li, F., Li, J., Wen, X., Zhou, S., Tong, X., Su, P., Li, H., Shi, D. 2009. Anti-tumor activity of paclitaxel-loaded chitosan nanoparticles: An in vitro study. Mater. Sci. Eng. C 29, 2392–2397. https://doi.org/10.1016/j.msec.2009.07.001.

Liang, J., Cao, L., Zhang, L., Wan, X.-C. 2014. Preparation, characterization, and in vitro antitumor activity of folate conjugated chitosan coated EGCG nanoparticles. Food Sci. Biotechnol. 23, 569–575. https://doi.org/10.1007/s10068-014-0078-4.

Liu, D., Chang, P.R., Chen, M., Wu, Q. 2011. Chitosan colloidal suspension composed of mechanically disassembled nanofibers. J. Colloid Interface Sci. 354, 637–643. https://doi.org/10.1016/j.jcis.2010.11.041.

Liu, Q., Zheng, X., Zhang, C., Shao, X., Zhang, X., Zhang, Q., Jiang, X. 2014. Antigen-conjugated N-trimethylaminoethylmethacrylate Chitosan Nanoparticles Induce Strong Immune Responses After Nasal Administration. Pharm. Res. 32, 22–36. https://doi.org/10.1007/s11095-014-1441-0.

Luque-Alcaraz, A.G., Lizardi, J., Goycoolea, F.M., Valdez, M.A., Acosta, A.L., Iloki-Assanga, S.B., Higuera-Ciapara, I., Argüelles- Monal, W. 2012. Characterization and Antiproliferative Activity of Nobiletin-Loaded Chitosan Nanoparticles. J. Nanomater. 2012. https://doi.org/10.1155/2012/265161.

Mali, N., Wavikar, P., Vavia, P. 2015. Serratiopeptidase loaded chitosan nanoparticles by polyelectrolyte complexation: in vitro and in vivo evaluation. AAPS PharmSciTech 16, 59–66. https://doi.org/10.1208/s12249-014-0201-0.

Mao, H.Q., Roy, K., Troung-Le, V.L., Janes, K.A., Lin, K.Y., Wang, Y., August, J.T., Leong, K.W. 2001. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J. Control. Release Off. J. Control. Release Soc. 70, 399–421.

Mao, J.S., Zhao, L.G., Yin, Y.J., Yao, K.D. 2003. Structure and properties of bilayer chitosan–gelatin scaffolds. Biomaterials 24, 1067–1074. https://doi.org/10.1016/S0142-9612(02)00442-8.

Martínez-Rivas, C.J., Tarhini, M., Badri, W., Miladi, K., Greige- Gerges, H., Nazari, Q.A., Galindo Rodríguez, S.A., Román, R.Á., Fessi, H., Elaissari, A. 2017. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 532, 66–81. https://doi.org/10.1016/j.ijpharm.2017.08.064.

Mehling, T., Smirnova, I., Guenther, U., Neubert, R.H.H. 2009. Polysaccharide-based aerogels as drug carriers. J. Non- Cryst. Solids 355, 2472–2479. https://doi.org/10.1016/j.jnoncrysol.2009.08.038.

Mitra, S., Gaur, U., Ghosh, P.C., Maitra, A.N. 2001. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J. Control. Release Off. J. Control. Release Soc. 74, 317–323.

Nam, J.-P., Choi, C., Jang, M.-K., Jeong, Y.-I., Nah, J.-W., Kim, S.-H., Park, Y. 2010. Insulin-incorporated chitosan nanoparticles based on polyelectrolyte complex formation. Macromol. Res. 18, 630–635. https://doi.org/10.1007/s13233-010-0714-7.

Nešić, A., Gordić, M., Davidović, S., Radovanović, Ž., Nedeljković, J., Smirnova, I., Gurikov, P. 2018. Pectin-based nanocomposite aerogels for potential insulated food packaging application. Carbohydr. Polym. 195, 128–135. https://doi.org/10.1016/j.carbpol.2018.04.076.

Ngan, L.T.K., Wang, S.-L., Hiep, Đ.M., Luong, P.M., Vui, N.T., Đinh, T.M., Dzung, N.A. 2014. Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Res. Chem. Intermed. 40, 2165–2175. https://doi.org/10.1007/s11164-014-1594-9.

Niwa, T., Takeuchi, H., Hino, T., Kunou, N., Kawashima, Y. 1994. In vitro drug release behavior of D,L-lactide/glycolide copolymer (PLGA) nanospheres with nafarelin acetate prepared by a novel spontaneous emulsification solvent diffusion method. J. Pharm. Sci. 83, 727–732.

Ohya, Y., Shiratani, M., Kobayashi, H., Ouchi, T. 1994. Release Behavior of 5-Fluorouracil from Chitosan-Gel Nanospheres Immobilizing 5-Fluorouracil Coated with Polysaccharides and Their Cell Specific Cytotoxicity. J. Macromol. Sci. Part A 31, 629–642. https://doi.org/10.1080/10601329409349743.

Orellano, M.S., Porporatto, C., Silber, J.J., Falcone, R.D., Correa, N.M. 2017. AOT reverse micelles as versatile reaction media for chitosan nanoparticles synthesis. Carbohydr. Polym. 171, 85–93. https://doi.org/10.1016/j.carbpol.2017.04.074

Pereira, A.G.B., Muniz, E.C., Hsieh, Y.-L. 2014. Chitosan-sheath and chitin-core nanowhiskers. Carbohydr. Polym. 107, 158–166. https://doi.org/10.1016/j.carbpol.2014.02.046.

Piñón-Segundo, E., Llera-Rojas, V.G., Leyva-Gómez, G., Urbán- Morlán, Z., Mendoza-Muñoz, N., Quintanar-Guerrero, D. 2018. Chapter 2 - The emulsification-diffusion method to obtain polymeric nanoparticles: Two decades of research, in: Grumezescu, A.M. (Ed.), Nanoscale Fabrication, Optimization, Scale-Up and Biological Aspects of Pharmaceutical Nanotechnology. William Andrew Publishing, pp. 51–83. https://doi.org/10.1016/B978-0-12-813629-4.00002-4.

Raj, R., Wairkar, S., Sridhar, V., Gaud, R. 2018. Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int. J. Biol. Macromol. 109, 27–35. https://doi.org/10.1016/j.ijbiomac.2017.12.056.

Riegger, B.R., Bäurer, B., Mirzayeva, A., Tovar, G.E.M., Bach, M. 2018. A systematic approach of chitosan nanoparticle preparation via emulsion crosslinking as potential adsorbent in wastewater treatment. Carbohydr. Polym. 180, 46–54. https://doi.org/10.1016/j.carbpol.2017.10.002.

Rinaudo, M., 2006. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 31, 603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001.

Rodrigues, S., Dionísio, M., López, C.R., Grenha, A. 2012. Biocompatibility of Chitosan Carriers with Application in Drug Delivery. J. Funct. Biomater. 3, 615–641. https://doi.org/10.3390/jfb3030615.

Shaker, M.A. 2015. Adsorption of Co(II), Ni(II) and Cu(II) ions onto chitosan-modified poly(methacrylate) nanoparticles: Dynamics, equilibrium and thermodynamics studies. J. Taiwan Inst. Chem. Eng. 57, 111–122. https://doi.org/10.1016/j.jtice.2015.05.027.

Silva, M.M., Calado, R., Marto, J., Bettencourt, A., Almeida, A.J., Gonçalves, L.M.D. 2017. Chitosan Nanoparticles as a Mucoadhesive Drug Delivery System for Ocular Administration. Mar. Drugs 15, 370. https://doi.org/10.3390/md15120370.

Sullivan, D.J., Cruz-Romero, M., Collins, T., Cummins, E., Kerry, J.P., Morris, M.A. 2018. Synthesis of monodisperse chitosan nanoparticles. Food Hydrocoll. 83, 355–364. https://doi.org/10.1016/j.foodhyd.2018.05.010.

Takeshita, S., Yoda, S., 2015. Chitosan Aerogels: Transparent, Flexible Thermal Insulators. Chem. Mater. 27, 7569–7572. https://doi.org/10.1021/acs.chemmater.5b03610.

Tian, X.X., Groves, M.J., 1999. Formulation and biological activity of antineoplastic proteoglycans derived from Mycobacterium vaccae in chitosan nanoparticles. J. Pharm. Pharmacol. 51, 151–157.

Tokumitsu, H., Ichikawa, H., Fukumori, Y. 1999. Chitosan- Gadopentetic Acid Complex Nanoparticles for Gadolinium Neutron-Capture Therapy of Cancer: Preparation by Novel Emulsion-Droplet Coalescence Technique and Characterization. Pharm. Res. 16, 1830–1835. https://doi.org/10.1023/A:1018995124527.

Vimal, S., Abdul Majeed, S., Taju, G., Nambi, K.S.N., Sundar Raj, N., Madan, N., Farook, M.A., Rajkumar, T., Gopinath, D., Sahul Hameed, A.S. 2013. Chitosan tripolyphosphate (CS/TPP) nanoparticles: Preparation, characterization and application for gene delivery in shrimp. Acta Trop. 128, 486–493. https://doi.org/10.1016/j.actatropica.2013.07.013.

Wang, Q., Zhao, Y., Guan, L., Zhang, Y., Dang, Q., Dong, P., Li, J., Liang, X. 2017. Preparation of astaxanthin-loaded DNA/ chitosan nanoparticles for improved cellular uptake and antioxidation capability. Food Chem. 227, 9–15. https://doi.org/10.1016/j.foodchem.2017.01.081.

Watzke, H.J., Dieschbourg, C. 1994. Novel silica-biopolymer nanocomposites: the silica sol-gel process in biopolymer organogels. Adv. Colloid Interface Sci. 50, 1–14. https://doi.org/10.1016/0001-8686(94)80021-9.

Wijesena, R.N., Tissera, N., Kannangara, Y.Y., Lin, Y., Amaratunga, G.A.J., de Silva, K.M.N. 2015. A method for top down preparation of chitosan nanoparticles and nanofibers. Carbohydr. Polym. 117, 731–738. https://doi.org/10.1016/j.carbpol.2014.10.055.

Zhang, W., Li, J., Zhang, J., Sheng, J., He, T., Tian, M., Zhao, Y., Xie, C., Mai, L., Mu, S. 2017. Top-Down Strategy to Synthesize Mesoporous Dual Carbon Armored MnO Nanoparticles for Lithium-Ion Battery Anodes. ACS Appl. Mater. Interfaces 9, 12680–12686. https://doi.org/10.1021/acsami.6b16576.

Zhi, J., Wang, Y., Lu, Y., Ma, J., Luo, G., 2006. In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. React. Funct. Polym. 66, 1552–1558. https://doi.org/10.1016/j.reactfunctpolym.2006.05.006.

Zhou, Y., Liu, S., Peng, H., Yu, L., He, B., Zhao, Q. 2015. In vivo anti-apoptosis activity of novel berberine-loaded chitosan nanoparticles effectively ameliorates osteoarthritis. Int. Immunopharmacol. 28, 34–43. https://doi.org/10.1016/j.intimp.2015.05.014

Descargas

Publicado

2019-07-18

Número

Sección

Artículos