Desarrollo y caracterización de recubrimientos comestibles de pectina con el agente de biocontrol atrapado Meyerozyma guilliermondii LMA-Cp01 para el manejo de Colletotrichum gloeosporioides de papaya

Autores/as

  • Rafael López-Cruz Tecnológico Nacional de México/Instituto Tecnológico de Tepic; Laboratorio Integral de Investigación en Alimentos; Av. Tecnológico 2595, Colonia Lagos del Country, Tepic, Nayarit, México, C.P. 63175. https://orcid.org/0000-0002-8575-384X
  • Juan Arturo Ragazzo-Sánchez Tecnológico Nacional de México/Instituto Tecnológico de Tepic; Laboratorio Integral de Investigación en Alimentos; Av. Tecnológico 2595 https://orcid.org/0000-0002-2298-3306
  • David Alberto García-Muro Tecnológico Nacional de México/Instituto Tecnológico de Tepic; Laboratorio Integral de Investigación en Alimentos; Av. Tecnológico 2595
  • Elizabeth Carvajal-Millán Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, México. https://orcid.org/0000-0003-4390-7457
  • Jorge Manuel Silva-Jara Departamento de Farmacología. Centro Universitario de Ciencias Exactas e Ingenierías. Universidad de Guadalajara, Jalisco, México. Boulevard Marcelino García Barragán #1421, Col. Olímpica, C.P. 44430. Guadalajara, Jalisco, México. https://orcid.org/0000-0001-8742-6247
  • Montserrat Calderón-Santoyo Tecnológico Nacional de México/Instituto Tecnológico de Tepic; Laboratorio Integral de Investigación en Alimentos; Av. Tecnológico 2595, Colonia Lagos del Country, Tepic, Nayarit, México, C.P. 63175. https://orcid.org/0000-0002-8744-1815

DOI:

https://doi.org/10.18633/biotecnia.v27.2496

Palabras clave:

Recubrimientos comestibles, control biológico, reología, cinética de gelificación

Resumen

Este trabajo tuvo como objetivo formular geles de pectina de bajo metoxilo al 1% (p/v), glicerol al 0.5% (p/v) y cloruro de calcio 0.5 mM para producir películas solas y combinadas con M. guilliermondii como recubrimiento comestible antifúngico. Los geles se caracterizaron reológicamente por barrido de frecuencia y cinética de gelificación. Se evaluó el efecto de la adición de levaduras en el espesor de las películas, cambio de color ΔE*, morfología, propiedades mecánicas y actividad antifúngica contra Colletotrichum gloeosporioides aislado de papaya. Las dispersiones formadoras de película mostraron un comportamiento viscoelástico y una estructura molecular estrecha de geles verdaderos. Estos geles débiles presentaron estabilidad estructural y su textura permitiría aplicaciones de inmersión o atomización. Las películas solas y adicionadas con M. guilliermondii mostraron espesor de 0.034 y 0.02 mm, respectivamente. ESEM mostró cambios en la morfología de las películas con levadura, lo que demuestra la encapsulación del agente de biocontrol. La adición de levaduras a las películas mejoró todos los parámetros mecánicos y logró una inhibición completa de C. gloeosporioides. Esta investigación proporciona nuevos sistemas basados en pectina viables para la elaboración de recubrimientos comestibles antifúngicos con M. guilliermondii que podrían proteger a las frutas contra enfermedades poscosecha.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abbastabar, B., Azizi, M.H., Adnani, A., and Abbasi, S. 2015. Determining and modeling rheological characteristics of quince seed gum. Food Hydrocolloids. 43: 259–264.

Abid, M., Cheikhrouhou, S., Renard, C.M.G.C., Bureau, S., Cuvelier, G., Attia, H., and Ayadi, M.A. 2017. Characterization of pectins extracted from pomegranate peel and their gelling properties. Food Chemistry. 215: 318–325.

Ayón-Macias, K.D., Ragazzo-Sánchez, J.A., Narváez-Zapata, J.A., Damasceno-Gomes, S., and Calderón-Santoyo, M. 2023. Meyerozyma strains as biocontrol agents against postharvest phytopathogens of jackfruit (Artocarpus heterophyllus Lam.). Archives of Phytopathology and Plant Protection. 56: 1180–1204.

Barbut, S. and Harper, B.A. 2019. Dried Ca-alginate films: Effects of glycerol, relative humidity, soy fibers, and carrageenan. LWT. 103: 260–265.

Bomzon, P.S. 2022. Sources, Origin and Characterization of Edible Packaging. In: Edible Food Packaging. Poonia A. and Dhewa T. (ed.), pp 27–37. Singapore: Springer Nature Singapore.

Calderón-Santoyo, M., Solis-Velazquez, O.A., Ragazzo-Sánchez, J.A., and Iñiguez-Moreno, M. 2022. Animal- and Plant-Based Edible Food Packaging for Perishable Foodstuff. In: Edible Food Packaging. Poonia, A. and Dhewa, T. (ed.), pp 39–85. Singapore: Springer Nature Singapore.

Cao, L., Lu, W., Mata, A., Nishinari, K., and Fang, Y. 2020. Egg-box model-based gelation of alginate and pectin: A review. Carbohydrate Polymers. 242: 116389.

Casamorin, J., Bennett, R., and Dedeles, G. 2014. Biosorption of Cd (II) by Yeasts from Ripe Fruit Peels in the Philippines. Journal of Health Pollution. 4: 14–24.

Cheng, L., Zhou, L., Li, D., Gao, Z., Teng, J., Nie, X., Guo, F., Wang, C., Wang, X., Li, S., and Li, X. 2023. Combining the biocontrol agent Meyerozyma guilliermondii with UV-C treatment to manage postharvest gray mold on kiwifruit. Biological Control. 180: 105198.

Chettri, S., Sharma, N., and Mohite, A.M. 2023. Edible coatings and films for shelf-life extension of fruit and vegetables. Biomaterials Advances. 154: 213632.

González-Estrada, R.R., Carvajal-Millán, E., Ragazzo-Sánchez, J.A., Bautista-Rosales, P.U., and Calderón-Santoyo, M. 2017. Control of blue mold decay on Persian lime: Application of covalently cross-linked arabinoxylans bioactive coatings with antagonistic yeast entrapped. LWT - Food Science and Technology. 85: 187–196.

González‐Gutiérrez, K.N., Ragazzo‐Sánchez, J.A., and Calderón‐Santoyo, M. 2024. Field and postharvest application of microencapsulated Yamadazyma mexicana LPa14 : anthracnose control and effect on postharvest quality in avocado (Persea americana Mill. cv. Hass). Pest Management Science. 800: 3459–3469.

Herrera-Balandrano, D.D., Wang, S.-Y., Wang, C.-X., Shi, X.-C., Liu, F.-Q., and Laborda, P. 2023. Antagonistic mechanisms of yeasts Meyerozyma guilliermondii and M. caribbica for the control of plant pathogens: A review. Biological Control. 186: 105333.

Hütter, M., Carrozza, M.A., Hulsen, M.A., and Anderson, P.D. 2020. Behavior of viscoelastic models with thermal fluctuations. The European Physical Journal E. 43: 24.

Iñiguez-Moreno, M., Ragazzo-Sánchez, J.A., Barros-Castillo, J.C., Solís-Pacheco, J.R., and Calderón-Santoyo, M. 2021. Characterization of sodium alginate coatings with Meyerozyma caribbica and impact on quality properties of avocado fruit. LWT. 152: 112346.

Jantrawut, P., Chaiwarit, T., Jantanasakulwong, K., Brachais, C., and Chambin, O. 2017. Effect of Plasticizer Type on Tensile Property and In Vitro Indomethacin Release of Thin Films Based on Low-Methoxyl Pectin. Polymers. 9: 289.

Jhanani, G.K., AlSalhi, M.S., T, N., and Shanmuganathan, R. 2024. As assessment of shelf life increasing competence of pectin (Zucchini) based edible coating on tomatoes. Environmental Research. 258: 119368.

Kaur, J., Gunjal, M., Rasane, P., Singh, J., Kaur, S., Poonia, A., and Gupta, P. 2022. Edible Packaging: An Overview. In: Edible Food Packaging. Poonia, A. and Dhewa, T. (ed.), pp 3-25. Singapore: Springer Nature Singapore.

López-Cruz, R., Segarra, G., Torres, R., Teixidó, N., Ragazzo-Sanchez, J.A., and Calderon-Santoyo, M. 2023. Biocontrol efficacy of Meyerozyma guilliermondii LMA-Cp01 against post-harvest pathogens of fruits. Archives of Phytopathology and Plant Protection. 56: 1003–1020.

Mihoubi, W., Sahli, E., Gargouri, A., and Amiel, C. 2017. FTIR spectroscopy of whole cells for the monitoring of yeast apoptosis mediated by p53 over-expression and its suppression by Nigella sativa extracts. PLOS ONE. 12: e0180680.

Miranda, M., Bai, J., Pilon, L., Torres, R., Casals, C., Solsona, C., and Teixidó, N. 2024. Fundamentals of Edible Coatings and Combination with Biocontrol Agents: A Strategy to Improve Postharvest Fruit Preservation. Foods. 13: 2980.

Nunes, C., Silva, M., Farinha, D., Sales, H., Pontes, R., and Nunes, J. 2023. Edible Coatings and Future Trends in Active Food Packaging–Fruits’ and Traditional Sausages’ Shelf Life Increasing. Foods. 12: 3308.

Pandya, Y., Sharma, A., and Bakshi, M. 2023. Edible Coatings in Fruits: Effectiveness and Applicability: A Review. FoodSci: Indian Journal of Research in Food Science and Nutrition. 10: 1–10.

Patil, V., Shams, R., and Dash, K.K. 2023. Techno-functional characteristics, and potential applications of edible coatings: A comprehensive review. Journal of Agriculture and Food Research. 14: 100886.

Peerzada, J., Sinclair, B.J., Perinbarajan, G.K., Dutta, R., Shekhawat, R., Saikia, N., Chidambaram, R., and Mossa, A.-T. 2023. An overview on smart and active edible coatings: safety and regulations. European Food Research and Technology. 249: 1935–1952.

Phan, C.-M., Ross, M., Fahmy, K., McEwen, B., Hofmann, I., Chan, V.W.Y., Clark-Baba, C., and Jones, L. 2023. Evaluating Viscosity and Tear Breakup Time of Contemporary Commercial Ocular Lubricants on an in vitro Eye Model. Translational Vision Science & Technology. 12: 29.

Pillai, A.R.S., Eapen, A.S., Zhang, W., and Roy, S. 2024. Polysaccharide-Based Edible Biopolymer-Based Coatings for Fruit Preservation: A Review. Foods. 13: 1529.

Porat, R., Lichter, A., Terry, L.A., Harker, R., and Buzby, J. 2018. Postharvest losses of fruit and vegetables during retail and in consumers’ homes: Quantifications, causes, and means of prevention. Postharvest Biology and Technology. 139: 135–149.

Rohasmizah, H. and Azizah, M. 2022. Pectin-based edible coatings and nanoemulsion for the preservation of fruits and vegetables: A review. Applied Food Research. 2: 100221.

Santana, A.A. and Kieckbusch, T.G. 2013. Physical evaluation of biodegradable films of calcium alginate plasticized with polyols. Brazilian Journal of Chemical Engineering. 30: 835–845.

Shivangi, S., Dorairaj, D., Negi, P.S., and Shetty, N.P. 2021. Development and characterisation of a pectin-based edible film that contains mulberry leaf extract and its bio-active components. Food Hydrocolloids. 121: 107046.

Tseng, H.-C. and Chang, R.-Y. 2024. The identification of the generalised Maxwell fluid for n -hexadecane liquids via non-equilibrium molecular dynamics simulations. Molecular Simulation. 50: 463–469.

Vázquez-González, Y., Prieto, C., Calderón-Santoyo, M., Ragazzo-Sánchez, J.A., and Lagarón, J.M. 2024. Development of antifungal electrospun nanofiber mats containing Meyerozyma caribbica. Food Hydrocolloids. 147: 109343.

Vityazev, F. V., Khramova, D.S., Saveliev, N.Y., Ipatova, E.A., Burkov, A.A., Beloserov, V.S., Belyi, V.A., Kononov, L.O., Martinson, E.A., Litvinets, S.G., Markov, P.A., and Popov, S. V. 2020. Pectin–glycerol gel beads: Preparation, characterization and swelling behaviour. Carbohydrate Polymers. 238, 116166.

Yan, W., Gao, H., Qian, X., Jiang, Y., Zhou, J., Dong, W., Xin, F., Zhang, W., and Jiang, M. 2021. Biotechnological applications of the non-conventional yeast Meyerozyma guilliermondii. Biotechnology Advances. 46: 107674.

Zhou, C., Bai, J., Zhang, F., Zhang, R., Zhang, X., Zhong, K., and Yan, B. 2023. Development of mussel-inspired chitosan-derived edible coating for fruit preservation. Carbohydrate Polymers. 321: 121293.

Resumen gráfico

Publicado

2025-05-30

Cómo citar

López-Cruz, R., Ragazzo-Sánchez, J. A., García-Muro, D. A., Carvajal-Millán, E., Silva-Jara, J. M., & Calderón-Santoyo, M. (2025). Desarrollo y caracterización de recubrimientos comestibles de pectina con el agente de biocontrol atrapado Meyerozyma guilliermondii LMA-Cp01 para el manejo de Colletotrichum gloeosporioides de papaya. Biotecnia, 27, e2496. https://doi.org/10.18633/biotecnia.v27.2496

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a