Efecto de la aplicación de altas presiones hidrostáticas sobre la inactivación de Escherichia coli O157:H7 y el perfil volátil de jugo de maracuyá (Passiflora edulis)

Autores/as

  • Montserrat Calderón-Santoyo Tecnológico Nacional de México image/svg+xml
  • Jorge Alberto Ramos-Hernández Universidad Politecnica de la región Laguna
  • Julio César Barros-Castillo Tecnológico Nacional del Mexico / Instituto Tecnológico de Tepic
  • Gonzalo Velázquez-de la Cruz Instituto Politécnico Nacional
  • José Alberto Ramírez-de-León Universidad Autónoma de Tamaulipas
  • Juan Arturo Ragazzo-Sanchez Tecnologico Nacional de México/Instituto Tecnologico de Tepic

DOI:

https://doi.org/10.18633/biotecnia.v27.2427

Palabras clave:

Altas presiones hidrostáticas, Escherichia coli O157:H7, maracuyá, perfil aromático, jugo de frutas

Resumen

Se determinó el efecto de altas presiones hidrostáticas (APH) sobre la inactivación de Escherichia coli O157:H7 en jugo de maracuyá (Passiflora edulis), se evaluaron algunas características fisicoquímicas y aromáticas del jugo de inoculado. Se empleó un diseño 33 considerando como factores la presión, temperatura y tiempo de tratamiento (150, 200, 250 MPa; 25, 35, 45 º C; 0, 10, 20 min). Se aplicó un modelo cuadrático para la optimización de las condiciones de proceso empleando la metodología de superficie de respuesta. Se determinó E. coli en jugo almacenado (6 días, 4 ºC). El perfil volátil se analizó empleando la técnica de microextracción en fase sólida de espacio de cabeza (HS-SPME) y GC-MS. Se observó que a partir 150 MPa y 35 º C, se inactiva totalmente E. coli. Los tratamientos no tienen efecto sobre los sólidos solubles totales (SST) del jugo, lo que sugiere aceptabilidad por los consumidores. Respecto al perfil volátil, los alcoholes y ésteres responsables del aroma característicos de maracuyá disminuyeron su concentración (16 %) a 45 ° C. Las condiciones óptimas para obtener un jugo de maracuyá microbiológicamente seguro, conservando su composición aromática, SST y pH se determinaron a 200 MPa, 35 ° C y 10 min.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Augusto, P.E.D., Tribst, A.A.L. y Cristianini, M. 2018. High Hydrostatic Pressure and High-Pressure Homogenization Processing of Fruit Juices. Fruit Juices. 393-421. https://doi.org/10.1016/B978-0-12-802230-6.00020-5

Benjamin, O. y Gamrasni, D. 2020. Microbial, nutritional, and organoleptic quality of pomegranate juice following high‐pressure homogenization and low‐temperature pasteurization. Journal of food science. 85(3), 592-599. https://doi.org/10.1111/1750-3841.15032

Błaszczak, W., Amarowicz, R. y Górecki, A.R. 2017. Antioxidant capacity, phenolic composition and microbial stability of aronia juice subjected to high hydrostatic pressure processing. Innovative Food Science & Emerging Technologies. 39, 141-147. https://doi.org/10.1016/j.ifset.2016.12.005

Bulut, S. y Karatzas, K.A.G. 2021. Inactivation of Escherichia coli K12 in phosphate buffer saline and orange juice by high hydrostatic pressure processing combined with freezing. Lwt. 136, 110313. https://doi.org/10.1016/j.lwt.2020.110313

Buzrul, S. 2019. High hydrostatic pressure inactivation of microorganisms: A probabilistic model for target log-reductions. International Journal of Food Microbiology. 309, 108330. https://doi.org/10.1016/j.ijfoodmicro.2019.108330

Calderón-Santoyo, M., López-Quintana, G.D., Ramírez-de-León, J.A., Jiménez-Sánchez, D.E. y Ragazzo-Sánchez, J.A. 2019. Effect of the high hydrostatic pressure on aromatic profiles and inactivation of Escherichia coli O157:H7 in mango nectar. Revista Bio Ciencias. 6, 709. doi: https://doi.org/10.15741/revbio.06.e709

Carvalho, F., George, J., Sheikh, H.M.A. y Selvin, R. 2018. Advances in screening, detection and enumeration of Escherichia coli using nanotechnology-based methods: A review. Journal of Biomedical Nanotechnology. 14(5), 829-846. https://doi.org/10.1166/jbn.2018.2549

Castro-Rosas, J., Cerna-Cortés, J.F., Méndez-Reyes, E., Lopez-Hernandez, D., Gómez-Aldapa, C.A. y Estrada-Garcia, T. 2012. Presence of faecal coliforms, Escherichia coli and diarrheagenic E. coli pathotypes in ready-to-eat salads, from an area where crops are irrigated with untreated sewage water. International journal of food micro-biology. 156 (2), 176-180. https://doi.org/10.1016/j.ijfoodmicro.2012.03.025

Cazarin, C.B.B., da Silva, J.K., Colomeu, T.C., Batista, Â.G., Meletti, L.M.M., Paschoal, J.A.R., Bogusz Junior, S., Braga, P.A. de C., Reyes, F.G.R., Augusto, F., de Meirelles, L.R., Zollner, R. de L. y Maróstica Júnior, M.R. 2015. Intake of Passiflora edulis leaf extract improves antioxidant and anti-inflammatory status in rats with 2,4,6-trinitrobenzenesulphonic acid induced colitis. Journal of Functional Foods. 17, 575–586. https://doi.org/10.1016/j.jff.2015.05.034

de Souza, V.R., Popović, V., Bissonnette, S., Ros, I., Mats, L., Duizer, L., Warriner, K. y Koutchma, T. 2020. Quality changes in cold pressed juices after processing by high hydrostatic pressure, ultraviolet-c light and thermal treatment at commercial regimes. Innovative Food Science & Emerging Technologies. 64, 102398. https://doi.org/10.1016/j.ifset.2020.102398

Espina, L., García-Gonzalo, D., Laglaoui, A., Mackey, B.M., y Pagán, R. 2013. Synergistic combinations of high hydrostatic pressure and essential oils or their constituents and their use in preservation of fruit juices. International Journal of Food Microbiology. 161(1), 23-3. https://doi.org/10.1016/j.ijfoodmicro.2012.11.015

Gohrbandt, M., Lipski, A., Grimshaw, J.W., Buttress, J.A., Baig, Z., Herkenhoff, B., Walter, S., Kurre, R., Deckers-Hebestreit, G. y Strahl, H. 2022. Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria. The EMBO journal. 41(5), 109800. https://doi.org/10.15252/embj.2021109800

Hereu, A., Dalgaard, P., Garriga, M., Aymerich, T. y Bover-Cid, S. 2014. Analysing and modelling the growth behaviour of Listeria monocytogenes on RTE cooked meat products after a high pressure treatment at 400 MPa. International Journal of Food Microbiology. 186, 84-94. https://doi.org/10.1016/j.ijfoodmicro.2014.06.020

Jordan, M.J., Goodner, K.L. y Shaw, P.E. 2000. Volatile components in tropical fruit essences: yellow passion fruit (Passiflora edulis Sims F. flavicarpa Degner) and banana (Musa sapientum L.). Proceedings of Florida State Horticultural Society. 113, 284-286. ISSN: 0886-7283

Jung, L.S., Lee, H.Y., Lee, S.H., Kim, S. y Ahn, J. 2013. Assessment of pressure-induced inactivation of Listeria monocytogenes exposed to low pHs. Food Science and Biotechnology. 22, 99-105. https://doi.org/10.1007/s10068-013-0014-z

Kim, M.J., Lee, J.I., y Park, S.H. 2024. Enhancing Bactericidal Efficacy of High-Pressure Processing (HPP) Against Foodborne Pathogens: The Role of pH and Mechanistic Insights. Food and Bioprocess Technology. 1-13. https://doi.org/10.1007/s11947-024-03471-4

Lomelí-Martín, A., Martínez, L.M., Welti-Chanes, J. y Escobedo-Avellaneda, Z. 2021. Induced changes in aroma compounds of foods treated with high hydrostatic pressure: A review. Foods. 10(4), 878. https://doi.org/10.3390/foods10040878

Mamede, A.M., Soares, A.G., Oliveira, E.J. y Farah, A. 2017. Volatile composition of sweet passion fruit (Passiflora alata Curtis). Journal of Chemistry. 2017(1), 3497216. https://doi.org/10.1155/2017/3497216

Manassero, C.A., Speroni, F. y Vaudagna, S.R. 2019. High hydrostatic pressure treatment improves physicochemical properties of calcium- and soybean protein-added peach juice. Lwt. 101, 54–60. https://doi.org/10.1016/j.lwt.2018.11.021

Moussa-Ayoub, T.E., Jäger, H., Knorr, D., El-Samahy, S.K., Kroh, L.W. y Rohn, S. 2017. Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii cactus juice. LWT-Food Science and Technology. 79, 534-542. https://doi.org/10.1016/j.lwt.2016.10.061

Mukhtar, K., Nabi, B.G., Arshad, R.N., Roobab, U., Yaseen, B., Ranjha, M.M.A. N., Aadil, R.M. y Ibrahim, S.A. 2022. Potential impact of ultrasound, pulsed electric field, high-pressure processing and microfludization against thermal treatments preservation regarding sugarcane juice (Saccharum officinarum). Ultrasonics Sonochemistry. 90, 106194. https://doi.org/10.1016/j.ultsonch.2022.106194

Pokhrel, P.R., Boulet, C., Yildiz, S., Sablani, S., Tang, J. y Barbosa-Cánovas, G.V. 2022. Effect of high hydrostatic pressure on microbial inactivation and quality changes in carrot-orange juice blends at varying pH. LWT. 159, 113219. https://doi.org/10.1016/j.lwt.2022.113219

Porębska, I., Sokołowska, B., Skąpska, S. y Rzoska, S.J. 2017. Treatment with high hydrostatic pressure and supercritical carbon dioxide to control Alicyclobacillus acidoterrestris spores in apple juice. Food Control. 73, 24-30. https://doi.org/10.1016/j.foodcont.2016.06.005

Prieto-Calvo, M., Prieto, M., López, M. y Alvarez-Ordóñez, A. 2014. Effects of high hydrostatic pressure on Escherichia coli ultrastructure, membrane integrity and molecular composition as assessed by FTIR spectroscopy and microscopic imaging techniques. Molecules. 19(12), 21310-21323. https://doi.org/10.3390/molecules191221310

Quiroz-González, B., Rodríguez-Martínez, V., García-Mateos, M. del R., Torres, J.A. y Welti-Chanes, J. 2018. High hydrostatic pressure inactivation and recovery study of Listeria innocua and Saccharomyces cerevisiae in pitaya (Stenocereus pruinosus) juice. Innovative Food Science and Emerging Technologies. 50, 169–173. https://doi.org/10.1016/j.ifset.2018.10.003

Sangronis, E., Pothakamury, U., Ramos, A.M., Ibarz, A., Barbosa-Cánovas, G.V. y Swanson, B.G. 1997. La alta presión hidrostática: una alternativa en el procesamiento no térmico de alimentos. Alimentaria. 283, 33-43. ISSN 0300-5755

Yang, D., Li, R., Dong, P., Rao, L., Wang, Y. y Liao, X. 2023. Influence of pressurization rate and mode on cell damage of Escherichia coli and Staphyloccocus aureus by high hydrostatic pressure. Frontiers in Microbiology. 14, 1108194. https://doi.org/10.3389/fmicb.2023.1108194

Descargas

Publicado

2025-01-21

Cómo citar

Calderón-Santoyo, M., Ramos-Hernández, J. A., Barros-Castillo, J. C., Velázquez-de la Cruz , G., Ramírez-de-León , J. A., & Ragazzo-Sanchez, J. A. (2025). Efecto de la aplicación de altas presiones hidrostáticas sobre la inactivación de Escherichia coli O157:H7 y el perfil volátil de jugo de maracuyá (Passiflora edulis). Biotecnia, 27, e2427. https://doi.org/10.18633/biotecnia.v27.2427

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a